Course Pack for Advanced Topics in TEI
June 13-17, 2016, University of Victoria

Syd Bauman, Northeastern University (s.bauman@neu.edu)
James Cummings, University of Oxford (james.cummings@it.ox.ac.uk)
Julia Flanders, Northeastern University (j . flanders@neu.edu)

This course pack contains the following materials:

1. Schedule

Encoder Predilection Profiling Tool
Document and Project Analysis Guide
Element Inventory Form (sample)

Levels of XML Rectitude chart

XPath axes diagram (aka “XPath Butterfly”)
Crib sheet for ODDs

Readings

@GN R WD

All materials are also available at the workshop web site:

http://www.wwp.northeastern.edu/outreach/seminars/uvic_advanced 2016/index.html

http://www.wwp.northeastern.edu/outreach/seminars/uvic_advanced_2014/
mailto:s.bauman@neu.edu
mailto:j.flanders@neu.edu

http://www.wwp.neu.edu/outreach/seminars/uvic_advanced_2016/

course instructors: Syd Bauman and James Cummings

course developed by: Julia Flanders, Syd Bauman, and James Cummings

—— Mon, 13 Jun —
Session 0 10:15-10:30 Welcome
logistics, introductions, gameplan
Session 1 10:30-12:00 Text encoding as data modeling
markup as modeling; document analysis
Session 2 13:30-16:00 Modeling and the TEI class system
exploring the TEI class system as a modeling tool
group hands-on work; discussion
—— Tue, 14 Jun
Session 3 09:00-12:00 Using pointers to model data
pointers in theory and practice
hands-on work (including development of sample
encoding)
Session 4 13:30-16:00 ODD: the TEI customization language
basics of ODD-writing
hands-on: develop test files and customization
—— Wed, 15 Jun
Session 5 09:00-12:00 Super-schema checking
Review of ODD; What a grammar can [not] do
XPath
Session 6 13:30-16:00 Rule-based schemas
Schematron
Hands-on: Schematron, schema design
—— Thu, 16 Jun
Session 7 09:00-12:00 ODDer

Review of ODD; TEI Processing Model
Individual hands-on practice and discussion
ODD writing = schema generation = schema testing ©

Session 8 13:30-16:00 ODDest
Individual hands-on practice and discussion
ODD writing - schema generation — schema testing ©

—— Fri, 17 Jun

Session 9 09:00-12:00 Final
hands-on; final discussion; wrap-up

Advanced Topics in TEI, DHSI 2016 1of 1

Encoder Predilection Profiling Tool

1. Respond to each question below by circling one of the two responses (agree or disagree).

Follow your gut; don’t overthink it! Like the famous personality test this is modeled on, it will be

somewhat irritating!

Agree

Disagree

| like to know in advance what my document is going to look like when it's published

| know a lot about my documents before | start encoding them

Text encoding is a discovery process for me

The more encoding the better

| like to have a good schema to guide my encoding before | look at the documents

Exceptions are more interesting than rules

Vanilla TEl is too open-ended to be useful to me

Text encoding is like close reading

I'd rather have powerful analytic encoding than a perfect description of my documents

Each document challenges my ideas about my schema in exciting ways

Now that TCP exists, there's no point to encoding those texts again

Text encoding should be a faithful representation of the textual artifact

A truly successful encoding always eliminates information

If I had time, | would find it helpful to develop a really tight schema for my data

No matter how much | read, there will always be some new text with unfamiliar features

Simple languages like TEI Tite are better for collaboration and interchange

| always know how I'm going to use each piece of markup in my output

Whatever my schema says, my stylesheets ultimately determine the shape of my data

My output needs are too open-ended to predict

| think people who encode at the word level need to get a life

| don’t see the point of text encoding if you don’t take it seriously as a form of research

My encoding is an important expression of my scholarship

| see text encoding as a means to an end

If my colleagues understood the TEI, they would understand my research better

Encoding an entire text by hand fills me with ennui—I wish it could be automated.

Encoding a text really expands my understanding of it

When my document doesn’t match my schema, | always change the schema

| would do anything to avoid changing my schema.

| feel most at home with metadata

Other people could learn a lot about me by examining my schema

Every time | start a new project, | feel like a learn a whole new perspective on the TEI

| know it's necessary, but mixing elements and text feels weird to me

Constraining attribute values is really important to me

My job as an encoder is to capture the words on the page and what they looked like

»w |||/ |IOoO|ZMAV||I|M|T|T || |M|M MM Z|0O|lV || |O|D|Z M|Z|T | m|im|m

oMo mMmZ2|M|T|M|T ||| M| |T0T|Z M O|O|T|M|w MimMm|Z2|Mm| @|lZ2|2Z2|3

It's not data unless it's consistent

TEI Lite could probably meet 90% of my encoding needs

Encoding tends to erase what's distinctive about my documents

Ultimately, the encoded text is just an impoverished surrogate for the original

It's important to me that my encoding represent a theory of the text

My documents are so idiosyncratic that it's almost impossible to generalize about them

The only person who will really need my schema is my programmer

The whole point of encoding is to let the document teach us about itself

Beyond the paragraph level, text encoding is unsustainably expensive

The TEI needs to keep evolving as projects learn more and more about their data

Personographies and other highly structured data are the most powerful part of the TEI

| think <fw> provides more interesting data than <pb>

Schemas are an important part of my production work flow

| think schemas are an important way of regulating data

Z | Mo |O|lT|@@gMm|Mm | T | | ®|Z

mi "D O ®|TV 2|00 |0|0O|T|MmM

2. Total up your responses here:
Total D responses:
Total S responses:
Total E responses:
Total N responses:
Total P responses:
Total G responses:
Total F responses:
Total R responses:

3. Do a little math:

Your DS Score: D-S . Divide the result by 12: Multiply by 10:
Your EN Score: E-N . Divide the result by 12: Multiply by 10:
Your PG Score: P-G . Divide the result by 12: Multiply by 10:
Your FR Score: F-R . Divide the result by 12: Multiply by 10:

4. Interpreting the results:

DS score: Negative numbers locate you on the “S” end of this spectrum and indicate that you tend to be
most interested in representing the details of the source document. Positive numbers locate you on the “D”
end and indicate that you tend to be more oriented towards extracting data from the document, or
representing it in a data-like, highly structured way.

S: Source-oriented ¢

p D: Data-driven

EN score: Negative numbers locate you on the “N” end of this spectrum and indicate that you tend to be
more interested in normative, top-down, schema-driven approaches to modeling. Positive humbers locate
you on the “E” end and indicate that you tend to be more interested in descriptive, bottom-up, document-
driven approaches to modeling.

N: Normative <

p E: Descriptive

PG score: Negative numbers locate you on the “G” end of this spectrum and indicate that you tend to be
more interested in general-purpose forms of modeling with the goal of maximizing reuse. Positive
numbers locate you on the “P” end and indicate you tend to be more interested in project-specific forms of
modeling that are oriented more towards specific anticipated forms of usage.

G: General-purpose ¢

p P: Project-specific

FR score: Negative numbers locate you on the “R” end of this spectrum and indicate that you tend to be
more interested in exploratory, research-driven forms of modeling. Positive numbers locate you on the “F”
end and indicate that you tend to be more interested in function-driven forms of modeling that have a
specific tool set or functional outcome in mind

R: Research-driven

p F: Function-driven

DEPF

Data-driven, descriptive,
project-specific,
function-driven

DEGF

Data-driven, descriptive,
general-purpose,
function-driven

DNPF

Data-driven, normative,
project-specific,
function-driven

DNGF

Data-driven, normative,
general-purpose
function-driven

DEPR

Data-driven descriptive,
project-specific,
research-driven

DEGR

Data-driven descriptive,
general-purpose,
research-driven

DNPR

Data-driven, normative,
project-specific,
research-driven

DNGR

Data-driven, normative,
general-purpose,
research-driven

SEPF

Source-oriented
descriptive, project-
specific, function-driven

SEGF

Source-oriented
descriptive, general-
purpose, function-driven

SNPF

Source-oriented,
normative, project-
specific, function-driven

SNGF

Source-oriented,
normative, general-
purpose, function-driven

SEPR

Source-oriented
descriptive, project-
specific, research-driven

SEGR

Source-oriented
descriptive, general-
purpose, research-
driven

SNPR

Source-oriented,
normative, project-
specific, research-driven

SNGR

Source-oriented,
normative, general-
purpose, research-
driven

Document and Project Analysis for Schema Design

This worksheet is intended to guide you through some of the analytic process needed for an effective text
encoding plan (and by extension effective schema design). The questions below can be applied both to an
individual document, in preparation for encoding it, and also to a collection of documents, in preparation
for designing an encoding plan for the entire collection.

There are many different ways to work through this analysis. It can serve simply as a thought experiment
or a way of gaining an understanding of what would be involved in planning your data modeling work
in detail. More practically, if you are actually working through the questions below, you may find it
helpful to create a formal document recording the information you generate. Experimentation will help
you learn what works best for you, but here are some suggestions:

* In a table or spreadsheet, create an inventory of document features as you respond to the
questions in Section 1: Document Analysis.

* For each feature you've listed, list the elements and attributes needed to represent that feature.
(For instance, if you list bibliographic citations as a feature, then you might next list the specific
bibliographic elements needed for your representation.) You should also include in this list any
new elements you will need to create.

* Inaseparate table, create an inventory of elements and attributes. As you go through the
questions in Section 2: Project Analysis, you can refine this inventory based on a clearer sense of
project needs (perhaps demoting or removing some features and their elements). In Section 3:
Schema Design, this inventory can then be used to guide the creation of a test document and a
test TEI customization.

* For each element and attribute in the list, include a brief description of how it will be used (what
specific features it will be used to encode, how they are to be recognized). These notes can later
serve as the basis for your encoding documentation.

* You may find it helpful to add a column in which you identify the TEI module for each element
(which will enable you to quickly identify the set of TEI modules you'll need to include in your
schema) and the attribute class for each attribute.

* You could also include a column indicating what special customization is needed for specific
elements (for instance, an added attribute or a change of model class).

* Asyou develop your schema, you can use this document as a checklist, checking off the elements
you've taken care of and keeping track of what remains to be done (and keeping notes on any
remaining problems or loose ends).

A sample form is included at the end of this document.

1. Document Analysis

Overall structure and genre

[These questions focus on how your markup will represent the overall structural architecture of the
document.]

What is the overall structure of the document? Does it consist of a single textual object or an aggregation
(e.g. a complete works, a multivolume document, etc.)? Does it have front matter or back matter? What
textual unit will be represented in your encoding as an individual <TEI> structure?

Will you be capturing a documentary version of the text (using <sourceDoc>) or a facsimile (using
<facsimile>? (The analysis below focuses on a conventional <text> but if you are using one of these
additional representations you can extend the analysis to include them.)

What are the major structural components of the document? If you were creating a high-level outline of
the document, would it contain subdivisions (sub-subdivisions, etc.)? If so, what are these? (E.g. chapters,
poems, acts and scenes, generic sections, entries, etc.)

What kind of classification of these structural components is appropriate for your project? (Le. what are
the values for @type on <div>?) Consider here whether a fine-grained or coarse-grained classification is
most likely to be useful, given your audience and the use to which you'll be putting this information
(analysis, navigation, formatting...?)

Structural details
[These questions focus on lower-level structural features of the text.]

Within the <div> structure of the text, what features of the text will you need to represent in order to
provide for display, searching, analysis, or other processing? (For instance, if you are encoding a diary
and want to be able to index and sort the entries by date, you would need to represent those dates in a
way that allows them to be reliably identified and processed, for instance as <date> with @when inside
<dateline>.) Examples include:

* Structurally important dates (such as dates for log entries, letters, or articles)

* Structurally important names (such as bylines, signatures, or names on title pages)

* Structurally important places (such as place names in letter headings or title pages)

* Bibliographic information (e.g. associated with quotations)

* Material that is rhetorically distinct: quotations, dialogue, asides, editorial notes, speech bubbles
or captions in figures

This is just a set of illustrations, not an exhaustive list. Look through your documents and consider what
features are structurally important to the way they’ll be presented and used. For each feature you
identify, consider what level of consistency in the representation you’'ll need in order to do the
anticipated processing or discovery. What components are essential? Where do you need controlled
vocabularies? Are there features of your text that are very consistent in their structure, such that you
might benefit from a schema constraint to require them? For instance, should a letter be required to
always begin with a dateline and end with a signature? List the specific elements and attributes that
would be required, and any constraints on the order of elements that you would need to impose or test
for.

Transcription

[These questions focus on how you will use markup to represent significant aspects of the transcription
process.]

What forms of editorial intervention into the text will you be making as part of the transcription? Will
these interventions be represented in the markup or done silently? For instance:

* Regularization or modernization of spelling, typography, or punctuation
* Correction of typographical errors
* Supplying variant readings from multiple witnesses

If the text is not perfectly legible, how will you handle illegible or difficult-to-read passages? What criteria
will you apply in determining whether to treat a passage as illegible or simply unclear? (L.e. what level of
certainty do you need to have in order to propose a tentative reading?)

Do you need to differentiate between different levels of certainty in your transcription?

Do you need to assign responsibility for specific readings and transcriptional decisions?

Document appearance

[These questions focus on how you will represent the appearance of the source document and the details
of its material properties.]

What aspects of the source document’s appearance are significant for your project and need to be
represented explicitly as part of the markup? For instance: italics, typeface, alignment and justification,
type size (absolute or relative), ink color, location on the page (for features like notes and handwritten
additions), ornamentation.

What material properties of the source document are significant for your project and need to be
represented explicitly (e.g. in the <msDesc>)? When considering what needs to be represented, think
carefully about what pieces of information will actually be used in retrieval or analysis, and think about
what form you’ll need it in, to support those activities.

To what extent can this information be represented using a formal system (such as CSS or rendition
ladders)? Are there any aspects of the document’s appearance that cannot be formally described but still
need to be represented? Would a note on the text suffice for these?

Components not captured

[These questions focus on features that you are explicitly excluding from your representation of the
document.]

Are there any components of the document that can be omitted from your transcription altogether, based
on your intended usage of the document: for instance, front matter, advertisements, running heads, non-
authorial sections, footnotes, etc.?

Will these components simply be silently omitted or do you need to account for their absence in some
manner (e.g. with <gap> or in the document metadata)?

Annotation

[These questions focus on editorial commentary and annotation that are represented as part of the
markup (not on user annotations that are stored separately from the document).]

What forms of annotation or commentary, if any, will be included in the TEI encoding (whether in the
transcription itself or in a linked document)? For instance:

* Commentary on specific words or passages (such as glosses, explanatory notes)
* General notes on the text as a whole

* Biographical information about people mentioned in the text (such as might be represented in a
personography)
* Interpretive keywords, qualitative analysis codes

Consider whether these different kinds of information need to be handled differently in your output (for
instance, authorial footnotes distinguished from editorial footnotes; biographical information linked from
personal names; interpretive keywords visible only as part of the search interface). What encoding
mechanism makes sense for each one, given the way it will be used?

2. Project Analysis

[These questions are aimed both at helping you assess the value of each markup feature you are
considering, and also at helping you strategize the markup process. In this section, when we talk about
“encoding this feature” we mean both “transcribing the content of this feature” and also “adding the
markup necessary to explicitly represent this feature.” In many cases, the important question is not
whether you will transcribe a given feature (such as personal names) but what level of markup detail you
will use.]

Treating the features you've identified in the document analysis above as a kind of target, consider each
feature in light of your project’s functional goals:

* Will encoding this feature directly contribute to the functions you have identified as essential?

* Will encoding this feature contribute to functions that are highly valuable (or may possibly prove
important in the future)?

* Will encoding this feature now (rather than later) save time or money, or enable you to take
advantage of resources you have now and may not have later on?

Consider each feature in light of your project’s financial resources:

* Will encoding this feature add very significantly to the effort required to capture the text? (Will it
require any additional steps that take the encoder away from the text to do look-ups? Will it
require extra layers of error checking or increase the overall likelihood of error?)

Consider each feature in light of your project’s available staff and their expertise:

* Will it be possible for your project to identify and encode this feature adequately given the staff
expertise you have available? Does this feature require specialized subject knowledge? (If so,
would the encoding process require two separate passes through the text by two different people,
or would it make sense for one person to do all of the encoding?)

* Will encoding this feature require additional training of your staff?

* Will encoding this feature adequately require information that must be looked up or researched
(e.g. checking whether a quotation is exact or not; checking the correct regularization of old-style
dates; adding biographical information about people named in the text)?

Consider each feature in light of your project’s likely horizon of completion or activity:

* If your project has a short horizon of completion (e.g. imposed by a grant or personnel
availability), can you identify a set of features that would make sense as a first encoding pass
through the text, leaving more advanced features for a subsequent project phase? Features that
“make sense” in this context might be features that would support a basic display of the text (to
enable you to build a user base with a simple initial publication) or features that would enable

you to demonstrate proof of concept for a prototype analytical tool (for instance, basic
personography data to support a network diagram of a correspondence network).

* If your project has a phased funding model (e.g. a student worker every summer), can you
identify a sensible sequence of encoding activities that would focus on capturing additional
specific features over time? What would be the highest-priority features to focus on? What
groupings of features would make sense (from the perspective of both training and error-
checking)?

3. Schema Planning

Features of the transcription

[These questions are aimed at helping you identify the features that will be included in your schema, and
how they should be represented.]

For each of the features you identified in the document analysis above, if you haven’t already identified
the specific elements needed to produce an appropriate encoding, do so now. You may find it helpful to
create a test document with sample encoding at this stage.

For each of these features, consider what specific TEI attributes will be required, and whether you will
need to specify a controlled vocabulary or datatype, or alter an existing TEI controlled vocabulary or
datatype for that attribute.

In any cases where you identified a specific configuration of elements, consult the TEI Guidelines (or
your test document) to see whether this configuration can be encoded using the TEI in unmodified form,
or whether a customization is needed to allow specific elements in specific places.

Features not present

[These questions are aimed at helping you eliminate unnecessary components from your schemal]

What TEI elements will never be needed in your encoding? Are they in TEI modules (i.e. chapters of the
Guidelines) that contain elements you do plan to use? Or can you eliminate the entire module that
contains them?

What TEI attributes will never be needed in your encoding? Are there entire attribute classes that can be
removed from the schema?

¢auoQ

$9]0U UOT}LZIWO0ISN))

o[npout [H1

a8esn papuajug

dureu INJLIye I0 JUSWI

"papaau se puedxa ued noA jey) os 39ayspeards e Ul I1 JO UOISIdA e 3jeamd 0} Juem J[,noA ‘dydurexs ue 3snl st wiog sty

w10 A10juaAuf yudway dydureg

"9su82IT panodun 0'S UoRNQUY SUOWIWIOD SAIJESID BU} 8Y) Jopun |ge|leAy "paAIasal SjybL awos Joafoid SISIIAL USWOAA ANISISAIUN Uumolg 8y} pue uewneg pAS 0102 ®

<e3onb/>
UuoT1PU MU
B QUSUTIUOD STU3 UO YilIoJ Jybnoxq
sIeyjeJ Ino obe <awWTIl/>SIesk UsSASS

uny ur Jedk
oea D¢ "BLIOIIA UL PRY

SIASESIEE] 90UDIUOD

¢Rarear Jussaadal

pue 9I00S INOA<,W/HPId. SwTI>
<, uolbutysem#, sjonb> dnyrew Jusoyudew oy I, AJ3991109 30N13SU0D Y3 SI0(%HMQNHQV
<juagdsax/>
<dse1/></, WO, JubToy><dseai> dpdind
<BWRU/>< /SPIOMUDIRD><SWRU> SIEILS00 SN UOLBUWIYOS
<juagsdssa> ¢uon.Iasse
“A[rensed 1030en Jo uonisodoid e se "3
</uwonIssaad, eInserd> oy paddis snua oy, | “osuas ayew 10n1sU09 93 S20(] %uﬂ—.nﬂﬁmﬁum
<®30u/>
<ATP/>
‘<Tb/>230U<TIb> UT pPeMOTTE 30U U3 Addnd
ST <TH/>ATP<TH> ‘IHL UI ¢(3eyMm IPIYAMEI PIMIYD I T,

<ATP> ¢(S)ewayos [elliof o3 yoyewl
<.OIoU#, 230U> PM[EA B IO 9ALS | TINX Y3 JO XeIuAs a3 S20(] %ﬁﬁﬁ—ﬁb
b
oel 19 | vautioodayo oer
u AIq[U 9190 Ure 9 uu3o nu "SI930BIRYD
<oss@eTaTy/> | JOUNLIYENS 1290 UId Ny JPOdIU PIWLIOJ-[EW SOpN[OUL SSOUPIULIO
pesy/>iund<aT3Ti> aan[rey odwreg ssoupauLIOy
<u3SeTITI> 190y LPIRIB | -PATINX O S9[I prepurag A
=il r_w__mcm CO_“—Q_Low@_U suweu

"dQABW “1018[IOTA IUDWLIDAXD 3YSNOLY dINUI-T © ISN[SI SIYI TUDWOW U 10,
*PMINODI JO [SAI] PAILIIPUL D3 30W 03 [Ief JBYI SIONNSUOD 3], PUB SIOUNUDS, YSI[SUS] SISI[9[qeI SUIMO[[0F Y T,

010z 8besiieg ‘uewneg pAS

APNINOIY "TINX JO S[PAY], 14 YT,

 PPTTYD YUM ‘i :1UuBpuUSISap
—

::BUTTQTS-BUTMOTTOL
UM ‘: : BUTMOTTOJ

:1JT9S = ‘

Butpoaoaud

BbutTqTrs-bHbutpooaud

.
7 ’ .
) ==
[}
/ ’ [}
Q) ==
| / ‘ : -
\ / / “
\ . K 1 M
. k3 Q H
. H —
~< / ~° i —
s\ll- - Lama ~. ~ ~ Ra 1 u
. RS P S~y Ra
. - R4 ~ N I 0 1
’ AL . S N R i
. ¢¢] ~ Sl 1
B H
. ! \ /7! : .-
]] N /7 7 :
. ’ Y \ H -
~e . N / .
~ ’ A ~ . ’
-~ . ~ .
~ 4 S - 4 1
~ Sal~ \\ o 1
~o -~ e o '
-~ - —_—— .
~ - .
" 1
1
[}
.

P R e T T T T T e —

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PR
-
-
-
-
-
-
-
-
-
-
-
-
-
|||||||

: 1quaded yum ‘::103s90ue

(LJUswWajd WUBWNI0P IO 1001,)
JusWwivlo Jsow.ialno

Element list for ODD

Element list for ODD

This is a brief reference sheet listing the most essential elements used in
writing a TEI ODD file.

Ordered by Function

High-level ODD Structures

<schemaSpec>
The element that contains the formal schema specifications within the
ODD file. All the schema customization elements listed below are
children of <schemaSpec>.

ident=
Used on <schemaSpec> indicates the name of the schema that will
be created; required by roma.

<moduleRef>
A reference to a TEI module (i.e. a grouping of elements representing

a single chapter of the TEI Guidelines), by which the module is
included in the custom schema.

key=
Used on <moduleRef>, gives the short name of the module to be
included

except=
Used on <moduleRef>, lists which elements from the module which
should not be included

include=
Used on <moduleRef>, lists which elements from the module should
be included (thus excluding all others)

mode=
Used on almost all ODD elements, indicates the nature of the change
being made in relation to unmodified TEI:

» "add" indicates that the feature in question originates with the
customization and is additional to the unmodified TEI schema

m "delete" indicates that the feature in question is being
deleted from the custom schema

m "change" indicates that the feature in question is being
changed in some detail, and that the changed portion should

04/22/2016 08:26 AM 1of5

Element list for ODD

override the corresponding portion of the unmodified TEI
schema, leaving other portions unchanged

m "replace"” indicates that the feature in question is being
completely changed, and that the portion designated in the
custom schema should entirely replace the specification for
that feature in the unmodified TEI

Element Management

<elementSpec>
A specification of a single element in the schema, which can be used
to delete an element from an included module (with mode="delete")
or to modify some aspect of the element’s definition (with
mode="change" or mode="replace").

module=
Used with <elementSpec>, indicates the module in which the
element in question is defined.

ident=
Used with <elementSpec>, indicates the name of the element in
guestion

<altIdent>
Used inside <elementSpec> to change the name of an element;
indicates the new name by which the element being specified will be
known in the custom schema

<classes>
Used within <elementSpec> (or <classSpec>) to change the class
membership of the element (or class). Contains one or more
<member0f> elements which, by means of their key= attributes,
indicate the specific classes to which the element (or class) is being
added or from which it is being deleted.

<member0f>
Designates a specific model class to which an element is being added,
or from which it is being deleted.

key=
used on <member0f>, contains the name of the class being
designated.

mode=
used on <member0f>, with value "add", indicates that the element is
being added to the class designated by the <member0f> element.

04/22/2016 08:26 AM 20f5

Element list for ODD

<content>
Contains the content model for an element in RELAX NG (XML syntax)
or Pure ODD elements, for which see “Content”, below
<constraintSpec>
Contains a further syntactic constraint, typically expressed in ISO
Schematron.

Content

<elementRef>
A reference to an element (typically a TEI element, but perhaps one
you've added in your customization), indicating that it is permitted or
required at this point
key=
used on <elementRef>, indicates the element being refered to.
minOccurs=
indicates the smallest number of times the indicated element may
occur at this point (default is 1).
max0ccurs=
indicates the largest number of times the indicated element may occur
at this point (default is "unbounded", i.e. an infinite number of times).
<classRef>
A reference to an entire model class, all of whose members may (or
must) occur at this point
key=
used on <classRef>, indicates the model class being referred to.
include=
used on <c lassRef>, indicates which members of the model class
are being referred to
except=
used on <classRef>, indicates which members of the model class
are not being referred to
<textNode>
Used to indicate that a string of zero or more characters is allowed at
this point.
<sequence>
Indicates that each of the items referred to by the references inside
must occur; if preserveOrder="true" then furthermore they must
occur in the order specified

04/22/2016 08:26 AM 3of5

Element list for ODD

<alternate>
Indicates that only one of the items referred to by the references inside
must occur (the number of times a selected alternate must occur is
specified by minOccurs= and max0ccurs=

Attribute Management

<attList>
A list of attribute definitions; used to contain the <attDef> elements
that are used to add, delete, or modify the attributes for an element.
<attDef>
Used to designate an attribute that is being added, deleted, or
modified.
ident=
Used on <attDef>, indicates the name of the attribute in question.
<vallList>
A list of values for an attribute (used to add or alter a set of constrained
values).
<valltem>
A single value in a value list for an attribute.
<datatype>
Contains a reference to a TEI datatype, used when constraining the
contents of an element or attribute value.
<constraintSpec>
Contains a further syntactic constraint, typically expressed in ISO
Schematron.

Schema Documentation and Management

<gloss>
Used inside <elementSpec>, <attDef>, and <valItem> to provide
the full natural-language equivalent of the name (i.e. ident=) of the
construct. E.g., the <gloss> for <elementSpec ident="att">is
“attribute” (as opposed to “attention”)
<desc>
Used inside <elementSpec>, <attDef>, and <valltem> to
document the new or altered element, attribute, or attribute value.
<exemplum>
Contains an example of usage of the attribute (in <attDef>), class (in

04/22/2016 08:26 AM 40f5

Element list for ODD

<classSpec>), element (in <elementSpec>), or macro (in
<macroSpec>) along with optional commentary

<remarks>
Contains commentary or discussion about usage of the attribute (in
<attDef>), class (in <classSpec>), element (in <elementSpec>),
or macro (in <macroSpec>)

<classSpec>
A specification of a TEI class (either a model class or an attribute
class); often used (with a mode= of "change") to change the
membership of an attribute class

<macroSpec>
A specification of a TEI datatype or a chunk of arbitrary RELAX NG
code

Processing Model Documentation

<model>

Documents potential processing for a specified element
behaviour=

Names the process or function which this processing model uses in

order to produce output
predicate=

The XPath predicate expression giving the condition under which this

model applies
useSourceRendition=

Whether to obey any rendition attribute which is present (by default no)
<outputRendition>

Description of the rendering of this element (in selected context)
<modelGrp>

A grouping of <model> elements with common output
<modelSequence>

A sequence of <model> elements intended as a single set of actions

Copyleft 2010 Syd Bauman and Julia Flanders; source available at http://www.wwp.neu.edu/outreach
[seminars/ current/handouts/elementList odd.tei.

04/22/2016 08:26 AM 50f5

Readings and Links

The following readings all offer different perspectives on the central question of this
workshop: “How can we use TEI markup more precisely and powerfully to convey
information and meaning about texts?” Each one is attacking a different specific
challenge, and those challenges influence the way these authors frame the problem.

Bauman, Syd. “Freedom to Constrain: where does attribute constraint come
from, mommy?” Presented at Balisage: The Markup Conference 2008,
Montréal, Canada, August 12-15, 2008. In Bauman, Syd. “Freedom to
Constrain: where does attribute constraint come from, mommy?” Presented at
Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15,
2Bauman, Syd. “Freedom to Constrain: where does attribute constraint come
from, mommy?” Presented at Balisage: The Markup Conference 2008,
Montréal, Canada, August 12-15, 2008. In Proceedings of Balisage: The
Markup Conference 2008. Balisage Series on Markup Technologies, vol. 1
(2008). doi:10.4242/BalisageVoll.Bauman01l.

This article offers a thoughtful examination of how different levels of information within
a TEI system are or could be constrained.

Dodds, Leigh. “Schematron: validating XML using XSLT.” Presented at XSLT UK
2001, Oxford, UK, April 8-9 2001.
http://www.ldodds.com/papers/schematron_xsltuk.html

This paper discusses Schematron (in its early form) in some detail. I have extracted the
overview of how it works here. The rest of the paper dives into implementation details.

Flanders, Julia. “Challenges of Collaborative Standards for Digital Humanities.”
In Collaborative Research in the Digital Humanities, ed. Marilyn Deegan and
Willard McCarty. Ashgate Publishing, 2012.

This article considers the TEI customization mechanism as a way of modeling the
relationship between individual usage and community standards.

Sperberg-McQueen, C. M., David Dubin, Claus Huitfeldt, and Allen Renear.
“Drawing Inferences on the Basis of Markup.” B. Tommie Usdin and Steven R.
Newcomb (eds.) Proceedings of Extreme Markup Languages 2002: Montreal,
Canada. 2002.
http://conferences.idealliance.org/extreme/html/2002/CMSMcQO1/EML2002CMSMcQO1.html

This somewhat technical article explores the ways in which markup can be understood
as a carrier of formal information, and illustrates how we might approach the problem
of meaning and interpretation as an information processing problem.

http://www.ldodds.com/papers/schematron_xsltuk.html

Pichler, Alois. “Transcriptions, Texts, and Interpretation.” In: Culture and
Value. Beitrage des 18 Internationalen Wittgenstein Symposiums. 13-20
August 1995. Kirchberg am Wechsel. Ed. Kjell S. Johannessen and Tore
Nordenstam. Pp. 690-695.

This article offers a detailed look (from the perspective of a project focusing on
philosophical manuscripts) at how the work of transcription and the work of
interpretation intersect, and (by extension) how different layers of interpretive work
can be represented in markup.

Piez, Wendell. “Beyond the “Descriptive vs. Procedural” Distinction. Markup
Languages: Theory and Practice 3.2 (April 2001): 141-172.

This article examines the role played by constraint systems (schemas, work flows,
expectations about semantics) in determining the function of markup as an information-
bearing system.

Renear, Allen, and Jerome McGann. “What is text? A debate on the
philosophical and epistemological nature of text in the light of humanities
computing research.” ACH/ALLC Conference, University of Virginia, June 1999.

This short piece serves as a very sketchy framing of what has proved to be a long-
standing debate about the nature of text (and hence about the role markup might
legitimately play in representing text).

Burnard, Lou and Syd Bauman, eds. TEI P5: Guidelines for Electronic Text
Encoding and Interchange. 3.0.0. 2016-03. TEI Consortium.
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/index-toc.html.

Anyone planning to use the TEI seriously should read the TEI Guidelines. This
workshop will be drawing on material from the following chapters; reviewing these
would be good preparation, but no need to read them cover to cover (the are not
included int his packet):

Chapter v: A Gentle Introduction to XML
Chapter 3: Elements Available in All TEI Documents
Chapter 4: Default Text Structure

Chapter 7: Performance Texts

Chapter 11: Representation of Primary Sources
Chapter 13: Names, Dates, People, and Places
Chapter 16: Linking, Segmentation, and Alignment
Chapter 20: Non-hierarchical Structures

Chapter 22: Documentation Elements

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/index-toc.html

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

Balisage: The Markup
Conference 2008 @ aé(f &O
Proceedings ‘2 9

The Markup Conference ®

Freedom to Constrain
where does attribute constraint come from, mommy?

Syd Bauman

Senior Programmer/Analyst

Brown University Women Writers Project
<Syd_Bauman@Brown.edu>

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 Syd Bauman. Some rights reserved.

How to cite this paper

Bauman, Syd. “Freedom to Constrain: where does attribute constraint come from, mommy?”
Presented at Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008.
In Proceedings of Balisage: The Markup Conference 2008. Balisage Series on Markup
Technologies, vol. 1 (2008). doi:16.4242/BalisageVoll.Bauman6l.

Abstract

Where should attribute constraints live? In an external schema? In the
document’s own metadata? In a separate file? Several possibilities are
examined, raising lots of questions and offering a few answers.

Table of Contents

Use Case
Background
Open vs Closed vs Extensible Schemas
Literate Encoding
In the Closed Schema (RELAX NG file)
how
advantages
disadvantages
In the Open Schema (ISO Schematron)
In the Metaschema (ODD file)
how
advantages

Freedom to Constrain 1 of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

disadvantages
In the Metadata (<teiHeader>)

how — pointing

advantages

disadvantages

how — co-reference
In the Metadata (separate file)
Appendix A. <codeGrp> to Schematron

It is clear that constraining document structure is a very important part of
document production. We test whether or not our XML documents are
properly constrained through the process of validation. “The ... purpose of
validation is to subject a document ... to a test, to determine whether it
conforms to a given set of external criteria. ... Our need to test is simply
explained and understood (so much so that it rarely needs to be explicated): if
there exists a point in a process where it is less expensive to discover and
correct problems than it is to save the work of testing and fix at later points, it
is profitable to introduce a test.”[!]

Michael Sperberg-McQueen may have summed this importance up best when
he advised “constrain your data early and often”, which he often did.[?! (It
helped that he lived in Chicago at the time.)

So it is obvious that constraints need to be expressed in a formal language of
some sort. Many such general-purpose formal languages are available,
including closed schema languages like DTDs and RELAX NG, and open
schema languages like Schematron and CLiX. Furthermore at least one
literate encoding language exists in which such constraints along with
documentation about them can be expressed. This language is called ODD (for
“one document does it all”) — constraints expressed in other languages
(DTDs, RELAX NG, or XML Schema; in theory others as well) can be derived
from a set of constraints expressed in ODD.[BI4IBI6] Furthermore there are
systems of constraint based on special-purpose languages, rather than
general-purpose languages. The feature system declaration created by the
Text Encoding Initiative (TEI) and now being incorporated into ISO 24610-2 is
an example — a set of XML elements (the feature system declaration) that can
be used to constrain the expression of another set of XML elements (the
feature structure itself).l”!

So the choice of how to express a particular constraint is not always obvious.
But a related question is perhaps just as important: where should these
constraints be expressed? What are the consequences of expressing them in
different places?

Freedom to Constrain 20f 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

This paper will attempt to shed light on these general questions by taking an
in-depth look at the possible locations for the expression of one particular
kind of constraint, and the consequences of those different locations. The
constraint discussed will be that of limiting the value an attribute may take to
one of an enumerated list of possible values. For simplicity the presumed
setting for this constraint will be in a TEI document, but the principles should
be equally applicable to any other encoding language that separates the
document from its metadata, including DocBook or XHTML. The locations
considered will be

e the “normal” way, in the formal closed schema (RELAX NG will be used

as the example)

¢ in a formal open schema (ISO Schematron will be used as the example)

¢ in the metadata element (i.e. <teiHeader>)

e in a separate metadata file

¢ in the metaschema file (i.e. the ODD file)

e no formal constraint

Each of the latter methods will be compared to and contrasted with the first.

Use Case

There are lots of reasons to wish to constrain markup constructs, in particular
attribute values. One case worth considering is the markup project which has
tens or hundreds of occurrences of a particular attribute in each of tens or
hundreds of files, where the list of possible values for the attribute is different
for each file.

Imagine, e.g., an epigraphy project transcribing thousands of inscriptions on
various objects. Imagine further that the inscriptions are divided among 27
separate files, organized by some criteria other than the kind of object that
bears the inscription (e.g. date the object was discovered, current museum in
which it is held, whatever). That which the text bearing object is made of is
recorded in a TEI manuscript description on the material= attribute of the

<supportDesc> element. Possible values might include "bronze", "marble", "limestone",
"plaster", "wood", etc.

Such a typical humanities computing project is likely to have:

e a subject matter expert
e an XML expert
e encoders — getting the extant text into XML-encoded digital form may

Freedom to Constrain 30f16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

be accomplished in a variety of ways:

o typed from source
o post-OCR editing
o via an external vendor
e proofreaders, managers, web designers, research assistants, etc.

Background

Open vs Closed vs Extensible Schemas

Formal schema languages can generally be categorized into one of two types:
open or closed. A closed schema language like RELAX NG specifies a
complete document grammar. Only those documents that meet all of the
constraints of the grammar are considered valid; all others are rejected as
invalid.

An open schema language, like Schematron, specifies particular rules.
Documents that violate the specified rules are rejected as invalid; all others
are accepted as valid.

One can think of closed schema languages as a white list spam filter, and
closed schema languages as a black list spam filter. Using a white list (closed
schema language) only e-mail from the addresses specified get through, all
others are rejected as spam. Using a black list (open schema language) any
e-mail that is on the list of problematic addresses is rejected as spam, all
others are allowed through.

Of course the situation is not as simple as that. One can specify some open
constructs in many closed schema languages, and one can write sufficiently
tight rules in most open languages that they behave like a closed language.

For example, validation against the following complete RELAX NG grammar
will permit any XML document as long as it has a <foo> element with a bar=

attribute as the first child of the root element.

start = element * { any attribute*, foo, any element* }

any attribute = attribute * { text }

any element = element * { any* }

any = (any attribute | any element | text)

any sans _bar = (attribute * - (bar) { text } | any element | text)
foo = element foo { attribute bar { text }, any sans bar* }

Conversely, validation against the following Schematron rule will permit only
those documents that have one <platypus> element with a bill= attribute that
has the value "duck" as the only child of the root <enigma> element.

Freedom to Constrain 4 0of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

<pattern>
<rule context="/*">
<assert test="name(.)='enigma'">Root element must be "enigma'</assert>

<report test="@*">Root "enigma" element can not have attributes</report>
<assert test="count(child::*)=1">"enigma" can only have one child
("platypus")</assert>
<assert test="count(child::platypus)=1">"enigma" can only have one
"platypus" child</assert>
<report test="child::text()[not(normalize-space(.)="'"')]1">"enigma" is
not allowed to have text, just "platypus'</report>

</rule>

<rule context="/enigma/platypus">
<assert test="@*[name(.)='bill']">"platypus" must have a bill=
attribute</assert>
<report test="@*[not(name(.)='bill')]">"platypus" must not have any
attributes other than bill=</report>
<report test="child::*">"platypus" must be empty (i.e., can not have
child elements)</report>
<assert test="string-length(normalize-space(.)) = 0">"platypus"
must be empty (i.e., can not contain text)</assert>

</rule>

<rule context="/enigma/platypus/@bill">
<assert test="normalize-space(.)='duck'">The value of bill= of
"platypus" must be 'duck'</assert>

</rule>

</pattern>

These reverse uses of open and closed schema languages may be thought of
as analogous to black-list or white-list spam filters that permit wildcards.

Neither of the above examples are particularly good ways of performing the
desired validation, but they serve as proofs-of-concept that when we refer to a
schema language as “open” or “closed”, we may be referring to its default,
and not its only, behavior.

There is one further twist worth mentioning. Some modular XML document
systems, including DocBook and TEI, permit a user of the system to generate
(closed) schemas that contain not only the element and attribute declarations
native to the system, but also additional declarations for constructs added by
the user.

Literate Encoding

Literate programming is a style of programming intended to make computer
documentation better by, among other things, placing the documentation and
source code in the same computer file. The TEI has applied this concept to the
schemas used to validate documents to help ascertain whether or not they
conform to the TEI Guidelines. The source code from which the schemas are
generated and the prose documentation that make up the bulk of the TEI
Guidelines are stored in one computer document.

In order to facilitate this, and in order to help make it easy to extract formal

Freedom to Constrain 50f16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

schemas in any of a variety of popular languages, the formal constraints are
(for the most part) expressed in the TEI language, rather than any particular
schema language.

Thus the TEI Guidelines proper (some 32 chapters of prose documentation),
formal schemas expressed in RELAX NG, the XML DTD language, or the W3C
Schema language, and reference documentation for those schemas, are all
extracted from the same single document. We say that this “one document
does” it all, and thus it is referred to as an ODD document.

In the Closed Schema (RELAX NG file)

how

Many are probably quite familiar with the mechanism for constraining an
enumerated attribute in a formal closed schema language. E.g., in RELAX NG
(compact syntax), the possible values of the type= attribute (in this case, of the

<name> element) could be constrained with a construct like

attribute type { "person" | "place" | "ship" | "sword" }

A variety of readily available off-the-shelf software will test whether or not a
document is valid with respect to a RELAX NG schema.

advantages

This method is extremely common for a reason: it makes a lot of sense. In
many, many cases XML document structure is already governed by an
external closed schema. These external schemas, at least when written in one
of the three major languages (DTD, RELAX NG, W3C XML Schema) are
generally easy to read and process. They describe the constraint in a standard
formal language that has wide software support, including open source
validators.

These languages typically provide the capability to specify a variety of
structural and content constraints on XML documents. In particular, they
provide the capability needed here: to constrain the set of possible values of
the type= attribute to one of a list of possibilities. 8]

disadvantages

In many cases, the person or persons who write and maintain the external
schema is not the same as the person or persons who create the XML
instances (or the programs that write the XML instances) that conform to it.

Freedom to Constrain 6 of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

In these cases, those who create the instances often do not have either the
necessary knowledge (e.g., knowing the schema language) or capability (e.g.,
having read-write access to the schema) to make changes to it.

Furthermore in many cases (whether the instance creator is the same as the
schema maintainer or not), a single external schema governs the validity of
dozens or even tens of thousands of XML instances. But the desired
constraints on a particular attribute may be different in different instances.
Typically in these cases the schema limits the attribute to one of a set that is
the union of all possible values in all governed documents. Here adding the
additional constraint of “only these values in this document” requires making
a separate schema that is like the original in all respects except for the
declaration of the type= attribute of <names>.

In the Open Schema (ISO Schematron)

Many are probably quite familiar with the mechanism for constraining an
enumerated attribute in a formal open schema language. E.g., in Schematron
(DSDL part 4), the possible values of the type= attribute of the TEI <name>

element could be constrained with a construct like

<pattern>
<rule context="tei:name/@type">
<assert test="normalize-space(.)='person'

or normalize-space(.)="'place'’
or normalize-space(.)="'ship'
or normalize-space(.)="'sword"'">
Names can only be of people, places, ships, or swords
</assert>
</rule>
</pattern>

While the use of open vs closed schemas have a lot of advantages and
disadvantages to the schema designer, with respect to this particular
question, the advantages and disadvantages are primarily the same: while the
constraint can be expressed in a formal, widely supported language, and can
be tested with readily available tools, it is still in a separate file that may
support many documents, that may not be accessible, and that uses a
language that may be foreign to those who would like to change it.

There is one additional disadvantage of Schematron in particular with respect
to RELAX NG: it is harder to annotate the Schematron schema than the
RELAX NG schema. RELAX NG deliberately permits elements from other
namespaces to be mixed in with the RELAX NG specifications, and defines
where annotations relating to particular structures should go. Furthermore,
because the four tokens against which we are trying to validate are expressed

Freedom to Constrain 7 0f 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

as four separate elements (in the XML syntax), there is a place to annotate
each separately (the <a:documentation> element follows the <rng:value> element to
which it refers). Schematron also has a built-in documentation feature (a <p>
element), but because all four tokens are tucked into a single XPath
expression, it is a bit harder to discuss them individually. This is partially
confounded because <p> is not permitted in <rule>, <assert>, Or <report>, making
it difficult to put the documentation close to the code. This is partially
alleviated because elements from foreign namespaces are permitted in those
spaces, and inside <p>. Thus something like the following construct could be

used to provide documentation of such a constraint.

<pattern>
<p class="annotation">The various values for <tei:att>type</tei:att> of
<tei:gi>name</tei:gi> came about as follows: <tei:list type="gloss">
<tei:label>
<tei:val>person</tei:val>
</tei:label>
<tei:item>Added 2007-04-17 when we removed <tei:gi>persName</tei:gi></tei:item>
<tei:label>
<tei:val>place</tei:val>
</tei:label>
<tei:item>Added 2007-04-17 when we removed <tei:gi>placeName</tei:gi></tei:item>
<tei:label>
<tei:val>ship</tei:val>
</tei:label>
<tei:item>Added 2007-04-17 in order to accommodate the various ship names</tei:item>
<tei:label>
<tei:val>ship</tei:val>
</tei:label>
<tei:item>Added 2007-10-02 when we found a reference to "Excalibur" that the
professor needed to annotate</tei:item>
</tei:list>
</p>
<rule context="tei:name/@type">
<tei:note><tei:att>type</tei:att> of <tei:gi>rs</tei:gi> is matched elsewhere.</tei:note>

<assert test=".='person' or .='place' or .='ship' or .='sword'"> Names may only be
of people, places, ships, or swords </assert>
</rule>
</pattern>

In the Metaschema (ODD file)

how

The same constraint might be expressed, at a slightly higher level of
abstraction and combined with some documentation, using the ODD literate
encoding language:

<attDef ident="type">
<vallList type="closed">
<valltem ident="person"'>
<desc>The name refers to a person</desc>
</valltem>
<valltem ident="place">

Freedom to Constrain 8of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

<desc>The name refers to a political or man-made region, for example
a city, country, hamlet, town, or neighborhood. For geographical
places such as rivers or valleys, use <gi>geogName</gi></desc>
</valltem>
<valltem ident="ship">
<desc>The name refers to a ship, whether sea-worthy, interplanetary,
or interstellar</desc>
</valltem>
<valIltem ident="sword">
<desc>The name refers to a sword</desc>
</valltem>
</vallList>
</attDef>

There exists software that will “tangle” ODD specifications like the above into
formal declarations in one of several schema languages, including RELAX NG.
Then any of the same variety of readily available off-the-shelf software could
be used to test validity.

Furthermore, there exists software that will “weave” the same specification
above into easily readable hyperlinked documentation.

advantages

The advantages of literate programming are well understood, and include
more easily readable and understandable source code, and that
documentation (because it is right next to the source code) is more likely to
match the program and be updated when the source code changes.[®! These
advantages apply here as well. In addition, at least for those familiar with TEI,
there is the advantage that the language used to describe the constraints is a
TEI language, so schema designers are likely to be familiar with at least the
documentation paradigm for the specialized schema-description elements, if
not the elements themselves; in addition, they are likely familiar with the
generic TEI elements (like <desc>, above) that are used in addition to the
specialized elements.

disadvantages

The disadvantages of the external schema (whether open or closed) are
present here as well. Furthermore, an extra processing step is required to
generate (i.e. “tangle”) a schema that itself can be used to validate instances
using off-the-shelf software. In addition, at least for those who are not
intimately familiar with TEI, there is the disadvantage that the language used
to describe the constraints is primarily a TEI language, so schema designers
may not be familiar with the specialized schema-description elements.

In the Metadata (<teiHeader>)

Freedom to Constrain 9o0f 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

how — pointing

It should be quite feasible to develop a mechanism for expressing the list of
possible values of an attribute in the same document in a rather abstract way.
For example:

<codeGrp elementTypes="name rs" attributes="type">
<codeDef xml:id="person">The name or string refers to a
person</codeDef>
<codeDef xml:id="place">The name or string refers to a
political or man-made region, for example a city, country,
hamlet, town, or neighborhood. For geographical places such as
rivers or valleys, use <gi>geogName</gi></codeDef>
<codeDef xml:id="ship">The name or string refers to a ship,
whether sea-worthy, interplanetary, or
interstellar</codeDef>
<codeDef xml:id="sword">The name or string refers to a
sword, <foreign xml:lang="fr">main-gauche</foreign>, switchblade,
or other edged weapon</codeDef>
</codeGrp>

Given this encoding in the <teiHeader>, the <name> element could have type=
values of "#person", "#place", etc. Software could be developed to validate that
the value of type= of <name> is a URI that points to an element whose parent
<codeGrp> has "name" in its elementTypes= list and "type" in its attributes= list. (I
believe that Schematron code could probably be used for this test, but have
not yet demonstrated this.) Note that the check does not specify the element
type of the child of <codeGrp>. This gives the flexibility to have special-purpose
<codeDef>-like elements that might provide structured information about the
value. E.g., one can well imagine the TEI’s <handNote> element being used in
this way.

advantages

This mechanism has significant potential advantages, particularly in cases
where one schema is used for many files which may have different attribute
constraint requirements. For most users it is much easier to change
something in the same file they are working on, rather then needing to make
changes to an external schema, particularly an external schema that may be
in a language the user does not know or in a file to which the user does not
have write access, and particularly changes that might inadvertently
invalidate other existing instances. Thus the encoder, as opposed to the
schema-designer, can add, remove, or change a value quite easily.

Another advantage is that the information about to what values the attribute
is constrained, and what those values mean, is an integral part of the
document. This means that this information will survive in the situation where
a document instance is sent along without its schema or documentation.

Freedom to Constrain 10 of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

Furthermore the list of values in different files at a given project could be
slightly different.

Moreover, the particular system shown here has the advantage that it uses a
mechanism most users are already familiar with: xml:id= and relative URIs
(i.e., bare name fragment identifiers). It is worth noting, though, that there is
no requirement that the URIs be bare name fragment identifiers, which
permits this system to quickly and easily be changed to that which is
discussed in section “In the Metadata (separate file)”.

disadvantages

This system has obvious inefficiencies when multiple, perhaps thousands, of
document instances share the same constraints — the same information is
repeated in each file.

Another significant disadvantage of this method is that we are using a
non-standard language for constraint and documentation. The question, then,
is whether or not this system is demonstrably significantly better than what
can be obtained using standard languages.!!°]

Lastly the fact that this system uses the URI pointing mechanism produces a
disadvantages, one of which is severely problematic:

e of minor annoyance is that the user needs to encode a hash-mark (“#”,
U+0023) at the beginning of each value;

e the fact that values are restricted to XML Names could be a problem in
some situations;

e but far more problematic, because xml:id= needs to be unique within the
document, any given possible attribute value can only occur on one
attribute (although that attribute could be on multiple elements) —
furthermore, no other element elsewhere in the document can use the
same string as one of these attribute values as its identifier.

how — co-reference

Those last disadvantages that are the result of using xmt:id= and URIs could be
circumvented by matching the attribute values, rather than using a true
pointer (e.g. ID/IDREF or URI). In the <teiHeader> the enumeration of the
possible attribute values would look almost the same, but would use a
different attribute for storing the actual value.

<codeGrp elementTypes="name rs" attributes="type">
<codeDef attrVal="person">The name or string refers to a
person</codeDef>

Freedom to Constrain 11 of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

<codeDef attrVal="place">The name or string refers to a
political or man-made region, for example a city, country,
hamlet, town, or neighborhood. For geographical places such as
rivers or valleys, use <gi>geogName</gi></codeDef>

<codeDef attrVal="ship">The name or string refers to a ship,
whether sea-worthy, interplanetary, or
interstellar</codeDef>

<codeDef attrVal="sword">The name or string refers to a
sword, <foreign xml:lang="fr">main-gauche</foreign>, switchblade,
or other edged weapon</codeDef>

</codeGrp>

Software could be developed to validate that the value of type= of <name> is a
string that matches the attrval= attribute of an element whose parent <codeGrp>
has "name" in its elementTypes= list and "type" in its attribute= list. (I believe that
Schematron code could probably be used for this test, but have not yet
demonstrated this. Certainly XSLT 1.0 can transform this into simple
Schematron; this I have demonstrated, see Appendix A.) Note that the check

does not specify the element type of the child of <codeGrp>. This gives the
flexibility to have special-purpose <codebef>-like elements that might provide

structured information about the value. E.g., one can well imagine the TEI’s
<handNote> element being used in this way.

This system avoids the disadvantages of using xml:id=, and yet has several
advantages over external schema files. E.g., encoders can quickly and easily
add values to closed lists, in a manner that does not run the the risk that they
might break the rest of the schema. I find the case of the encoder who wishes
to quickly and easily express stricter constraints on her attribute values in a
given file than those that come with the generic external schema very
compelling.

In the Metadata (separate file)

In the method described in section “how — pointing” the values of the type=
attribute of <name> are URIs. Because of this, it would be feasible to store the
<codeGrp> element with xml:id= attributes in a project-wide

“attribute definitions.xml” file. While this has the advantage of flexibility and
reusability, it presents the sizable disadvantage that the attribute values
would now depend on details of system features external to the document.
E.g., the ability to validate <name type="../attribute definitions.xml#sword"> breaks
if the current file is moved to a sub-directory.

Furthermore, if the <codeGrp> is stored in a separate file, the maintenance

issues are almost the same as those for a separate closed schema (e.g., a
RELAX NG grammar), open schema (e.g., a Schematron schema), or

Freedom to Constrain 12 of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

metaschema (e.g., a TEI ODD): those who have reason to change the
constraints expressed may not have the write-permissions necessary to do so,
and if they do may be at risk for invalidating files other than the one being
worked on.

So in some cases (in particular, the scenario sketched out in section “Use Case”) it

makes lots of sense to leave the formal constraints for some aspects of a
document in the metadata section of that document itself, e.g. in the
<teiHeader>. But having convinced ourselves there is a need to be able to
express constraints in a different place than is usual, why require a separate
formal construct to express the constraint? Why not include RELAX NG,
Schematron, or ODD markup constructs in the <teiHeader> directly?!'!! This is
worthy of consideration, but is outside the scope of the current paper.

Appendix A. <codeGrp> to Schematron

The following XSLT 1.0 stylesheet is a proof-of-concept demonstration for
transforming the <codeGrp> elements discussed above into Schematron that
could be used to validate that an XML instance used only the mentioned
possible values of the attribute specified.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Tranform my mythical <codeGrp> elements into a Schematron schema -->

<!-- Copyleft 2008 Syd Bauman -->

<!-- Last updated: 2008-08-31 -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:sch="http://purl.oclc.org/dsdl/schematron">

<xsl:template match="/">

<!-- only mess with <codeGrp> elements; if there are none, we do nothing -->
<!-- Note that we presume each <codeGrp> has both elementTypes= and -->
<!-- attriubtes= specified and that their values are lists of one or more -->
<!-- XML Names. No error-checking for this here, schema validation should -->
<!-- have already flagged any that don't have both required attributes or -->
<!-- have inappropriate values. -->
<xsl:if test="//codeGrp">

<!l-- if there is one (or more) we write out a Schematron schema -->

<sch:schema>
<sch:ns uri="http://www.tei-c.org/ns/1.0" prefix="tei"/>
<!-- and process each <codeGrp> into it -->
<xsl:apply-templates select="//codeGrp"/>
</sch:schema>
</xsl:if>
</xsl:template>

<!-- Each <codeGrp> becomes a Schematron <pattern> -->
<xsl:template match="codeGrp">
<sch:pattern>

<!-- append a blank to the GI list for easier parsing later -->
<xsl:variable name="elementTypes" select="concat(normalize-space(@elementTypes),' ')"/>
<!-- append a blank to the attribute name list for easier parsing later -->
<xsl:variable name="attributes" select="concat(normalize-space(@attributes),"' ')"/>
<!-- Each GI/attribute pair becomes a Schematron <rule> -->

Freedom to Constrain 13 of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

<!-- A little more detail: each paired combination of -->

<!l-- 1. a GI listed on my elementTypes= attribute, and -->

<!-- 2. an attribute name listed on my attributes= attribte -->

<!-- becomes a <rule>. We do this by processing each GI in -->

<!l-- a recursive template, which in turn calls another recursive -->

<!-- template for the list of attributes. -->
<xsl:call-template name="elementTypes">
<xsl:with-param name="gis" select="$elementTypes"/>
<xsl:with-param name="attrs" select="$attributes"/>
</xsl:call-template>
</sch:pattern>
</xsl:template>

<!-- Each GI listed on the elementTypes= attribute gets processed separately -->
<xsl:template name="elementTypes">
<xsl:param name="gis"/>
<xsl:param name="attrs"/>
<!-- Taking advantage of that ending blank, parse off the 1st GI -->
<xsl:variable name="this gi" select="substring-before($gis,' ')"/>
<xsl:variable name="rest" select="substring-after($gis,' ')"/>
<!-- call attributes template to do the work for this particular GI -->
<xsl:call-template name="attributes">
<xsl:with-param name="gi" select="$this gi"/>
<xsl:with-param name="attrs" select="$attrs"/>
</xsl:call-template>
<!-- and do the same thing (via recursion) for the rest of the GIs, if any -->
<xsl:if test="string-length($rest) > 1">
<xsl:call-template name="elementTypes">
<xsl:with-param name="gis" select="$rest"/>
<xsl:with-param name="attrs" select="$attrs"/>
</xsl:call-template>
</xsl:if>
</xsl:template>

<!-- Each attibute name on the attributes= attribute gets processed in combination -->
<!l-- with the current GI -->
<xsl:template name="attributes">
<xsl:param name="gi"/>
<xsl:param name="attrs"/>
<!-- Taking advantage of that ending blank, parse off the 1lst attribute -->
<xsl:variable name="this attr" select="substring-before($attrs,' "')"/>
<xsl:variable name="rest" select="substring-after($attrs,' ')"/>
<!-- make a rule out of it -->
<xsl:element name="sch:rule">
<xsl:attribute name="context">
<!-- There must be a better way to do this ... -->
<xsl:text>tei:</xsl:text>
<xsl:value-of select="$gi"/>
<xsl:text>/@</xsl:text>
<xsl:value-of select="$this attr"/>
</xsl:attribute>
<xsl:variable name="numVals" select="count(child::*/@attrval)"/>

<l-- if I have no children with attrVal= specified, then don't -->
<!-- generate any assertions (luckily an emtpy <rule> is valid -->
<!-- in Schematron). -->

<xsl:if test="$numVals > 0">
<xsl:element name="sch:assert">

<!-- Probably would be better to generate this test (i.e., the expression -->
<!l-- that is the value of this output test= attribute) only once per attrVal=, -->
<!-- rather once for each attrVal= for each GI/attr combination. -->

<xsl:attribute name="test">
<xsl:for-each select="child::*/@attrVal">
<xsl:text>.="'</xsl:text>
<xsl:value-of select="."/>
<xsl:text>'</xsl:text>

Freedom to Constrain 14 of 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

<xsl:if test="$numVals > 1 and position() != last()">
<xsl:text> or </xsl:text>
</xsl:if>
</xsl:for-each>
</xsl:attribute>
</xsl:element>
</xsl:if>
</xsl:element>
<!l-- and do the same thing (via recursion) for the rest of the attributes, if any -->
<xsl:if test="string-length($rest) > 1">
<xsl:call-template name="attributes">
<xsl:with-param name="gi" select="$gi"/>
<xsl:with-param name="attrs" select="$rest"/>
</xsl:call-template>
</xsl:if>
</xsl:template>

</xsl:stylesheet>

(1] Piez, Wendell, “Beyond the ‘descriptive vs. procedural’ distinction”,
presented at Extreme Markup Languages 2001, Montréal, Canada.
http://www.idealliance.org/papers/extreme/proceedings/html/2001/Piez01
/EML2001Piez01.html.

[2] Sperberg-McQueen, C. Michael. Oral conversation, and multiple oral
presentations throughout the 1990s. See, e.g., http://www.w3.org/People
/cmsmcq/2001/darmstadt.html.

(31 Burnard, Lou and Syd Bauman, eds. “4.3.2 Floating Texts.” TEI P5:
Guidelines for Electronic Text Encoding and Interchange. Version 1.1.0.
2008-07-04. TEI Consortium. http://www.tei-c.org/release/doc/tei-p5-doc
/html/DS.html#DSFLT 2008-08-30

[4] Burnard, Lou and Syd Bauman, eds. “23.4 Implementation of an ODD
System.” TEI P5: Guidelines for Electronic Text Encoding and Interchange.
Version 1.1.0. 2008-07-04. TEI Consortium. http://www.tei-c.org/release
/doc/tei-p5-doc/en/html/USE. html#IM 2008-08-30

(5] Sperberg-McQueen, C. Michael and Lou Burnard. “The Design of the TEI
Encoding Scheme.” Computers and the Humanities 1995. 29 (1) p. 17-39.

(6] Burnard, Lou, Sebastian Rahtz. “RelaxNG with Son of ODD”, presented at
Extreme Markup Languages 2004, Montréal, Canada.
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Burnard01
/EML2004Burnard0O1.pdf.

[7] Burnard, Lou and Syd Bauman, eds. “18 Feature Structures” TEI P5:
Guidelines for Electronic Text Encoding and Interchange. Version 1.1.0.
2008-07-04. TEI Consortium. http://www.tei-c.org/release/doc/tei-p5-doc
/en/html/FS.html 2008-08-30

(8] DTDs impose greater restrictions on what the members of that list can be

Freedom to Constrain 15 0f 16

http://www.balisage.net/Proceedings/voll/print/Bauman01/BalisageVoll-Bauman01.html

than the others: each possible value must be an XML Name.
(91 Knuth, Donald. Literate Programming, ISBN 0-9370-7380-6.

[101' What some call Syd’s rule, and I have begun to call my wheel re-invention
prevention convention: “unless your method is significantly and demonstrably
superior to the standard, you should be using the standard.”.

(111 Indeed, James Cummings and I have suggested this on more than one
occasion. See, e.qg., http://lists.village.virginia.edu/pipermail/tei-council
/2005/005627.html.

Author's keywords for this paper: XML; attribute; TEI; ODD; constraint

Syd Bauman

<Syd_Bauman@Brown . edu>

Senior Programmer/Analyst

Brown University Women Writers Project

Syd Bauman is the technical person at the Brown University Women Writers
Project, where he has worked since 1990, designing and maintaining a
significantly extended TEI-conformant schema for encoding early printed
books. He has served as the North American Editor of the Text Encoding
Initiative Guidelines, has an AB from Brown University in political science,
and has worked as an Emergency Medical Technician since 1983.

Balisage Series on Markup Technologies

Freedom to Constrain 16 of 16

Schematron: validating XML using XSLT

Schematron Overview

excerpted from Leigh Dodds’ 2001 XSLT UK paper,
“Schematron: validating XML using XSLT”

Leigh Dodds, ingenta 1ltd, xmlhack.com

April 2001

Abstract

Schematron [Schematron] is a structural based validation language, defined by
Rick Jelliffe, as an alternative to existing grammar based approaches. Tree
patterns, defined as XPath expressions, are used to make assertions, and provide
user-centred reports about XML documents. Expressing validation rules using
patterns is often easier than defining the same rule using a content model. Tree
patterns are collected together to form a Schematron schema.

Schematron is a useful and accessible supplement to other schema languages.
The open-source XSLT implementation is based around a core framework which
is open for extension and customisation.

Overview

This paper provides an introduction to Schematron; an innovative XML validation
language developed by Rick Jelliffe. This innovation stems from selecting an
alternative approach to validation than existing schema languages: Schematron
uses a tree pattern based paradigm, rather than the regular grammars used in
DTDs and XML schemas. As an extensible, easy to use, open source tool
Schematron is an extremely useful addition to the XML developers toolkit.

The initial section of this paper conducts a brief overview of tree pattern
validation, and some of the advantages it has in comparison to a regular
grammar approach. This is followed by an outline of Schematron and the
intended uses which have guided its design. The Schematron language is then
discussed, covering all major elements in the language with examples of their

1of14

Schematron: validating XML using XSLT

usage. A trivial XML vocabulary is introduced for the purposes of generating
examples.

The later sections in this paper provides an overview of the open source XSLT
framework used to implement the Schematron language. The Schematron
conformance language for custom implementation is also introduced. The paper
completes with some suggestions of possible future extensions.

Introducing Tree Patterns as a Validation Mechanism

During the last few years a number of different XML schema languages have
appeared as suggested replacements for the ageing Document Type Definition
(DTD). The majority of these have taken the basic premise of recasting DTD
functionality in XML syntax with the addition, in some cases, of other features
such as data typing, inheritance, etc [XMLSchema]. The use of XML syntax
provides additional flexibility through leveraging existing tools for markup
manipulation, while the 'value added' features satisfy the requirements of
developers looking for closer integration with databases and object-oriented
languages.

Yet the fundamental approach adopted by these languages does not diverge
greatly from the DTD paradigm: the definition of schemas using regular
grammars. Less formally, schemas are constructed by defining parent-child and
sibling relationships [Jelliffe1999a]. For example in a DTD one might write:

<!ELEMENT wall EMPTY>
<!ELEMENT roof EMPTY>
<!ELEMENT house (wall+, roof)>

This defines three elements, wall, root, and house. The parent-child relationship
between house and wall elements is defined in the content model for house. A house
may have several walls.

The sibling relationship between wall and roof is derived from the same content
model, which defines them as legal sibling children of the house element.

However this means that DTDs, and similar derivatives, are unable to define (and
hence constrain) the other kinds of relationships that exist amongst markup
elements within a document. As the XPath specification [XPath] shows, there are
many possible kinds of relationship, known as 'axes'.

Example 1. Tree relationships (axes) defined by XPath

e child

e descendant

e parent

e ancestor

e following-sibling
e preceding-sibling

20f14

Schematron: validating XML using XSLT

e following

e preceding

e attribute
namespace

self
descendant-or-self
ancestor-or-self

While XML does include an ID/IDREF mechanism which allows for cross-
referencing between elements, and hence another form of relationships, it only
weakly binds those elements. There is no enforcement that an IDREF must point
to an ID on a particular element type, simply that is must point to an existing ID,
and further that all IDs must be unique.

Having highlighted the fact that the existing schema paradigm can only express
constraints among data items in terms of the child and sibling axes, it is natural
to consider whether an alternate paradigm might allow a schema author to
exploit these additional relationships to define additional types of constraint
amongst document elements. Tree patterns do just that, and XPath provides a
convenient syntax in which to express those patterns.

Validation using tree patterns is a two-step process:

e Firstly the candidate objects (in XPath terms, nodes) to be validated must be
identified. i.e. identify a context

e Secondly assertions must be made about those objects to test whether they
fulfill the required constraints.

Both the candidate object selection, and the assertions can be defined in terms of
XPath expressions. More formally, the nodes and arcs within a graph of data can
be traversed to both identify nodes, and then make assertions about the
relationships of those nodes to others within the same graph. Assertions are
therefore the mechanism for placing constraints on the relationships between
nodes in a graph (elements and attributes in an XML document).

For example, we may select all house nodes within a document using the
expression:

//house

And then assert that all houses have walls by confirming that the following pattern
selects one or more child nodes (within the context defined by the previous
selection):

child::wall

Regular grammars, as used in DTDs, can then be viewed as tree patterns where
the only available axis is the parent-child axis [Jelliffe1999e]. Full use of tree
pattern validation provides the maximum amount of freedom when modelling
constraints for a schema. This comes at very little cost: XPath is available in most

3of14

Schematron: validating XML using XSLT

XML environments. For example the following types of constraint are hard, or
impossible to express with other schema languages.

Example 2. Examples of 'difficult' constraints

e Where attribute X has a value, attribute Y is also required

e Where the parent of element A is element B, it must have an attribute Y,
otherwise an attribute Z

e The value of element P must be either "foo", "bar" or "baz"

Tree patterns are the schema paradigm underpinning Schematron as a validation

language.

There are reasons to believe that tree-pattern validation may be more suitable in

an environment where documents are constructed from elements in several
namespaces (often termed 'data islands'). As many consider that the future of
XML document interchange on the Internet will involve significant mixing of
vocabularies, a flexible approach may bring additional benefits.

Introducing Schematron
Background

Schematron [Schematron] is an XML schema language designed and
implemented by Rick Jelliffe at the Academia Sinica Computing Centre, Taiwan.
It combines powerful validation capabilities with a simple syntax and
implementation framework. Schematron is open source, and is (at the time of
writing) being migrated to SourceForge to better manage its development by a
rapidly growing community of users.

Schematron traces its ancestry [Jelliffe1999f] indirectly from SGML DTDs via
Assertion Grammars [Raggett], Groves and Property Sets [Arciniegas]. A recent
review of six current schema languages [Lee] supports this view, declaring
Schematron to be unique in both its approach and intent. Before discussing the

details of the Schematron language it is worth reviewing the design goals which

have been highlighted by its author.

Design Goals

There are several aims which Rick Jelliffe which believed were important during

the design and specification of Schematron [Schematron], [Jelliffe2001]:

e Promote natural language descriptions of validation failures, i.e. diagnose
as well as reject

e Reject the binary valid/invalid distinction which is inherent in other schema

languages
e Aim for a short learning curve by layering on existing tools (XPath and
XSLT)

4 of 14

Schematron: validating XML using XSLT

e Trivial to implement on top of XSLT

e Provide an architecture which lends itself to GUI development environments

e Support workflow by providing a system which understands the phases
through which a document passes in its lifecycle

Target Uses

Jelliffe has also suggested [Jelliffe2001] several target environments in which
Schematron is intended to add value:

e Document validation in software engineering, through the provision of
interlocking constraints

e Mining data graphs for academic research or information discovery.
Constraints may be viewed as hypotheses which are tested against the
available data

e Automatic creation of external markup through the detection of patterns in
data, and generation of links

e Use as a schema language for "hard" markup languages such as RDF.

e Aid accessibility of documents, by allowing usage constraints to be applied
to documents

How It Works

The implementation of Schematron derives from the observation that tree
pattern based validators can be trivially constructed usings XSLT stylesheets
[Jelliffe1999b], [Norton]. For example, a simple stylesheet that validates that
houses must have walls can be defined as follows:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">

<!-- select all houses -->
<xsl:template match="//house">
<!-- test whether it has any walls -->
<xsl:if test="not(wall)">
This house has no walls!
</xsl:if>
</xsl:template>

</xsl:stylesheet>

It should be obvious from the above that if a house does not have any walts, a
simple error message will be displayed to the user.

Schematron takes this a natural step further by defining a schema language
which, when transformed through a meta-stylesheet (i.e. a stylesheet which
generates other stylesheets), produces XSLT validators similar to the above. The
following diagram summarises this process.

Figure 1. Generating Validators Using Schematron

50f 14

Schematron: validating XML using XSLT

Editor'note: most Schematron users would call the first box
“schema.sch”.

Generating a Validating Stylesheet———

schematron. xslt

schema. xslt — (meta-stylesheet)

—» validator.xslt

document.xml —— validator.xslt ~— —— Validation Report

Validating a Document————

Schematron is therefore a simple layer above XPath and XSLT allowing it to
leverage existing tools, and benefit from a framework which is already familiar to
XSLT developers. Yet from a user perspective, the details of XSLT are hidden; the
end-user need only grapple with the XPath expressions used to define
constraints.

The following section outlines the Schematron assertion language which is used
to define Schematron schemas. The last section in the paper provides
information on the Schematron implementation (i.e. the metastylesheet) which
will be of interest to implementors seeking to customise Schematron for
particular needs.

The Schematron Assertion Language

This section introduces the Schematron assertion language which can be used to
generate XSLT validators using the Schematron implementation. All following
examples conform to a simple XML vocabulary introduced in the next section.

DTD For Example Content

The examples used within this section will refer to a fictional XML language for
describing building projects. While the examples could have been couched in
terms of an existing schema language, the intention is to provide a simple
vocabulary which does not assume any prior knowledge on behalf of the user. It
should be stressed that, while the examples themselves may be trivial this should
not be taken to indicate any specific limitation in Schematron, which is capable
of handling much more complex schemas.

6 of 14

Schematron: validating XML using XSLT

The following DTD defines the building project vocabulary:

Example 3. Simple XML language for illustrative purposes

<!ELEMENT wall EMPTY/>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

This schema allows us to describe a house consisting of a number of walls and a
roof. The roof may not be present if the house is still under construction.

A house has an address which consists of a street name, town and a postcode.

A house should have either a builder who is currently assigned to its
construction (and all builders must be certified), or an owner. Certification
numbers of builders, and telephone numbers of owners are also recorded for

roof EMPTY/>

street #PCDATA>

town #PCDATA>

postcode #PCDATA>

firstname #PCDATA>

lastname #PCDATA>

certification EMPTY>

certification number CDATA #REQUIRED>
telephone #PCDATA>

address (street, town, postcode)>

builder (firstname, lastname, certification)>
owner (firstname, lastname, telephone)>

house (wall+, roof?, address, (builder|owner)?>

adminstrative purposes.

A sample document instance conforming to this schema is:

Example 4. Sample document instance

<house>
<wall/>
<wall/>
<wall/>
<wall/>
<address>

<street>1 The High Street</street>
<town>New Town</town>
<postcode>NT1l</postcode>

</address>

<builder>

<firstname>Bob</firstname>
<lastname>Builder</lastname>
<certification number="123"/>

</builder>

</house>

Core Elements: Assert and Report

The basic building blocks of the schematron language are the assert and report

7 of 14

Schematron: validating XML using XSLT

elements. These define the constraints which collectively form the basis of a
Schematron schema. Constraints are assertions (boolean tests) that are made
about patterns in an XML document; these patterns and tests are defined using
XPath expressions.

The best illustration is a simple example:
Example 5. A simple assertion

<assert test="count(walls) = 4">This house does not have four walls</assert>

This demonstrates a simple assertion which counts the number of walts in the
current context. Recall that validation is a two step process of identification and
followed by assertion. The identification step generates the context in which
assertions are made. This is covered in the next section.

If there are not four walls then the assertion fails and a message, the content of
the assert element, is displayed to the user.

Asserts therefore operate in the conventional way: if the assertion evaluates to
false some action is taken. The report element works in the opposite manner. If
the test in a report element evaluates to true then action is taken.

While reports and asserts are effectively the inverse of one another, the intended
uses of the two elements are quite different. An assert is used to test whether a
document conforms to a particular schema, generating actions if deviations are
encountered. A report is used to highlight features of the underlying data:

Example 6. A simple report

<report test="not(roof)">This house does not have a roof</assert>

The distinction may seem subtle, especially when grapplying with a constraint
which may be expressed simpler in one way or the other. However Schematron
itself does not define the action which must be taken on a failed assert, or
successful report, this is implementation specific. The default behaviour is to
simply provide the user with the provided message. An implementation may
choose to handle these two cases differently.

It is worth noting that there is a trade-off to be made when defining tests on
these elements. In some cases a single complex XPath expression may accurately
capture the desired constraint. Yet it is closer to the 'spirit’' of Schematron's
design to use several smaller tests that collectively describe the same constraint.
Specific tests can more accurately provide feedback to a user, than a single
general test and associated message.

Assert and Report elements may contain a name element which has an optional
path attribute. This element will be substituted with the name of the current
element before a message is passed to the user. When supplied the path attribute

8 of 14

Schematron: validating XML using XSLT

should contain an XPath expression referencing an alternate element. This is
useful for giving additional feedback to the user about the specific element that
failing an assertion.

Schematron 1.5, released in January 2001, adds the ability to provide detailed
diagnostic information to users. Assert and report messages should be simple
declarative statements of what is, or should be. Diagnostics can include detailed
information that can be provided to the user as appropriate to the Schematron
implementation. Diagnostic information is grouped separately to constraints, and
is cross-referenced from a diagnostic attribute.

Example 7. Diagnostic Example
<assert test="count(walls) = 4" diagnostics="1">This house does not have four walls</assert>
<diagnostics>
<diagnostic id="1">

Its an odd house which has more or less than four walls! Consult your architect...
</diagnostic>

</diagnostics>

Writing Rules

As noted earlier, constraints must be applied within a context. The context for
constraints is defined by grouping them together to form rutes.

Example 8. Defining the context for assertions

<rule context="house">

<assert test="count(wall) = 4">A house should have four walls</assert>
<report test="not(roof)">This house does not have a roof</assert>
</rule>

The context attribute for a rule contains an XPath expression. This identifies the
candidate nodes to which constraints will be applied. The above example checks
that a house contains 4 wall child elements, and provides feedback to the user if it
is missing a roof.

Schematron 1.5 add a simple macro mechanism for rules which is useful when
combining constraints. To do this, a rule may be declared as 'abstract'. The
contents of this rule may be included by other rules as necessary. This is
achieved through the use of the extends element.

Example 9. Using abstract rules and the extends element

<rule abstract="true" id="nameChecks">
<assert test="firstname">A person must have a first name</assert>

9of 14

Schematron: validating XML using XSLT
<assert test="lastname">A person must have a last name</assert>
</rule>

<rule context="builder">
<extends rule="nameChecks"/>

<!-- builder specific constraints -->
</rule>
<rule context="owner">
<extends rule="nameChecks"/
<!-- owner specific constraints -->
</rule>
In the above example an abstract rule is defined, and assigned the id
"nameChecks". Two assertions are associated with this abstract rule: checking
that an element has a firstname and a lastname. These assertions are imported
by the other non-abstract rules and will be applied along with the other
constraints specific to that element. An abstract rule may contain assert and

report elements but it cannot have a context. Assertions from an abstract rule
obtain their context from the importing rule.

Producing Patterns and Schemas

The next most important element in a Schematron schema is pattern. Patterns
gather together a related set of rules. A particular schema may include several
patterns that logically group the constraints.

Example 10. Grouping rules using patterns

<pattern name="Adminstration Checks"
see="http://www.buildingprojects.org/admin/procedures.html">

<rule abstract="true" id="nameChecks">
<assert test="firstname">A person must have a first name</assert>
<assert test="lastname">A person must have a last name</assert>
</rule>

<rule context="builder">
<extends rules="nameChecks"/>

<!-- builder specific constraints -->
</rule>
<!-- additional rules -->

</pattern>

<pattern name="Other Constraints">
<!-- other rules -->

10 of 14

Schematron: validating XML using XSLT

</pattern>

A pattern should have a name and may refer to additional documentation using a
URL. A Schematron implementation can then furnish the user with a link to
supporting documentation.

Patterns defined within a schema will be applied sequentially (in lexical order).
Nodes in the input document are then matched against the contexts defined by
the rules contained within each pattern. If a node is found to match the context
of a particular rule, then the assertions which it contains will be applied. Within
a pattern a given node can only be matched against a single rule. Rules within
separate patterns may match the same node, but only the first match within a
pattern will be applied. An example of an incorrect schema is given below.

Example 11. Incorrect use of rule contexts

<pattern name="Adminstration Checks">

<!-- this rule WILL be matched -->
<rule context="builder">

<assert test="firstname">A person must have a first name</assert>
</rule>

<!-- this rule WILL NEVER be matched -->
<rule context="builder">
<assert test="lastname">A person must have a last name</assert>

</rule>
<!-- additional rules -->
</pattern>
<!-- rules in this pattern will be checked after the above -->

<pattern name="Other Constraints">
<!-- this rule WILL be matched -->
<rule context="builder">
<assert test="certification">A builder must be certified</assert>
</rule>

<!-- additional rules -->

</pattern>

Care should be taken when defining contexts to ensure that these circumstances
never arise.

The last step in defining a Schematron schema is to wrap everything up in a
schema element.

Example 12. Grouping patterns to create a schema

11 of 14

Schematron: validating XML using XSLT

<schema xmlns="http://www.ascc.net/xml/schematron">
<title>A Schematron Schema for Validating Building Project Documents</title>

<ns uri="http://www.buildingprojects.org/admin/" prefix="bld"/>

<pattern name="Adminstration Checks">
<l-- rules -->
</pattern>

<pattern name="Construction Checks">
<l-- rules -->
</pattern>

</schema>

There are several points to note about the above schema. Firstly it introduces the
namespace for Schematron documents, which is "http://www.ascc.net
/xml/schematron". Secondly a schema may have a title; this is recommended.

Conclusions

Schematron is unique amongst current schema languages in its divergence from
the regular grammar paradigm, and its user-centric approach.

Schematron is not meant as a replacement for other schema languages; it is not
expected to be easily mappable onto database schemas or programming
language constructs. It is a simple, easy to learn language that can perform
useful functions in addition to other tools in the XML developers toolkit.

It is also a tool with little overhead, both in terms of its learning curve and its
requirements. XSLT engines are regular components in any XML application

framework. Schematrons use of XPath and XSLT make it instantly familiar to

XML developers.

A significant advantage of Schematron is the ability to quickly produce schemas
that can be used to enforce house style rules and, more importantly, accessibility
guidelines without alteration to the schema to which a document conforms. An
XHTML document is still an XHTML document even if it does not meet the Web
Accessibility Initiative Guidelines [WAI]. These kind of constraints describe a
policy which is to be enforced on a document, and can thus be layered above
other schema languages. Indeed in many cases it may be impossible for other
languages to test these kinds of constraints.

Bibliography

[Arciniegas] Fabio Arciniegas. 19/04/2000. Groves Explained .

[Conformance] Rick Jelliffe. Schematron Conformance Language .

[Dodds] Leigh Dodds. 10/1/2001. Old Ghosts: XML Namespaces .

12 of 14

Schematron: validating XML using XSLT

[Holman] Ken Holman. Practical Transformations using XSLT and XPath .

[Jelliffe1999a] Rick Jelliffe. 1999. From Grammars To The Schematron .

[Jelliffe1999b] Rick Jelliffe. 24/01/1999. Using XSL as a Validation Language .

[Jelliffe1999c] Rick Jelliffe. 11/06/1999. How to Promote Organic Plurality on the
wWWww .

[Jelliffe1999d] Rick Jelliffe. 30/07/1999. Weak Validation .

[Jelliffe1999e¢] Rick Jelliffe. 01/08/1999. Axis Models & Path Models: Extending
DTDs with XPaths .

[Jelliffe1999f] Rick Jelliffe. 1999. Family Tree of Schema Languages for Markup
Languages .

[Jelliffe2000] Rick Jelliffe. 19/10/2000. Getting Information Into Markup: the Data

Model Behind the Schematron Assertion Language .

[Jelliffe2001] Rick Jelliffe. 31/1/2001. The Schematron Assertion Language 1.5 .

[Lee] . Comparative Analysis of Six XML Schema Languages .

[Norton] Francis Norton. 20/5/1999. Generating XSL for Schema Validation .

[OgbujiC] Chimezie Ogbuji. Validating XML with Schematron .

[OgbujiU] Uche Ogbuji. Introducing the Schematron .

[Quick] Rick Jelliffe. Schematron Quick Reference .

[Raggett] Dave Raggett. May 1999. Assertion Grammars .

[RDDL] Jonathan Borden and Tim Bray. 22/1/2001. Resource Directory
Description Lanqguage .

[Schematron] Rick Jelliffe. Schematron Home Page .

[WAI] Wendy Chisholm, Gregg Vanderheiden, and Ian Jacobs. 5/5/1999. Web
Content Accessibility Guidelines 1.0 .

[XHTML] Mark Baker, Masayasu Ishikawa, Shinichi Matsui, Peter Stark, Ted
Wugofski, and Toshihiko Yamakami. 19/12/2000. XHTML Basic .

[XMLNames] Tim Bray, Dave Hollander, and Andrew Layman. 14/1/1999.
Namespaces in XML .

[XMLSchema] David Fallside. 24/10/2000. XML Schema Part 0: Primer .

[XPath] James Clark and Steven DeRose. November 1999. XMI. Path Language
(XPath) Version 1.0 .

13 of 14

Schematron: validating XML using XSLT

[XSLT] James Clark. November 1999. XML Transformations (XSLT) Version 1.0 .

[Zvon] Miloslav Nic. Zvon Schematron Tutorial .

14 of 14

Collaboration and Dissent: Challenges of Collaborative
Standards for Digital Humanities %pre-print version)

Julia Flanders

Collaboration—Iliterally a shared work—is always understood to carry with it some kind of
sacrifice, a tradeoff between autonomy and synergy. In our collaborative relationships, we
intensify the concessions we make to the demands of the social contract, and we voluntarily submit
to norms of behavior and constraints on our freedom of action in order to gain the benefits of a
group undertaking: a barn-raising, a collection of essays, a successful conference. But even before
we as collaborators can adopt these norms, we (in a larger sense) also have to develop them. The
collaboration of conversation is predicated on the norms of language; collaboration on a scholarly
edition is predicated on a set of private agreements about the editorial mission, set against the
backdrop of larger disciplinary expectations concerning what editing means and how it proceeds.
So we might start by observing that collaboration takes place within frames of expectation that
may be private, local, professional, or broadly social. The vectors of agreement and conformance
are thus not solely between the collaborators themselves, but also between the collaborators and
some standards that operate beyond their own sphere of activity.

What makes collaboration between projects in the digital humanities particularly interesting —and
particularly challenging—is the way these different frames of expectation intersect. Digital
humanities projects take place, strikingly, in a universe constrained by a set of technical norms that
govern the informational and operational behavior of the digital environment. Because these
collaborations are so often aimed at building something that works—a tool, a resource, an online
collection—the collaborative activities are typically mediated through things like software tools
and data standards that are quite uncompromising. For instance, XML documents must obey the
rules of structural well-formedness prescribed by the XML standard; dates entered into a metadata
record must follow the agreed-upon format or the sorting routines that operate on this data won't
work. (Geoffrey Nunberg’s 2009 critique of Google Books” metadata illustrates the consequences of
failure vividly.) These technical standards mediate the collaboration by eliminating the need to
create all of these conventions from scratch, and the more exacting they are (and the more exactly
they are observed) the more powerful the technical outcome. High-function digital projects arise
from strong adherence to the right standards.

But in addition, as these projects arise from humanities research, they also require agreement
concerning disciplinary norms that shape the practices of digital representation. These include, for
instance, acceptable practices of transcription, regularization and emendation; acceptable
standards of authenticity and verification; the kinds of commentary and contextualization that are
acceptable or required; and beliefs about the interpretive or analytical or critical goals that are at
stake. These norms arise from detailed, ongoing debates concerning both the ultimate goals of
scholarship and the methods and practices by which we achieve them.

A traditional humanities view of this picture might ask what these two sets of norms have to do
with one another, any more than the editorial standards for a critical edition have to do with the

standards guiding the machinery that binds the book. But what the field of digital humanities as a
whole has revealed is precisely how tightly interwoven and mutually consequential “technical”
and “disciplinary” standards often are. Our concern in this discussion is in fact a domain in which
disciplinary and technical norms overlap and where we see, locked in struggle, the drive towards
absolute consistency and technical processability on the one hand, and the drive towards critical
independence and disciplinary debate on the other. I am referring here to the arena of standards
for digital representation of research materials, and in particular the domain of scholarly markup
languages. Standards of this kind are an essential precondition for the development of
collaborative projects in the digital humanities, because they permit us to exchange scholarly
information about research materials in a digital form.

A markup language is a method of digital representation through which we can create highly
complex models of textual artifacts. The markup constitutes an information structure which
formalizes, labels, and enhances the source material: it makes explicit the nature and function of
each piece of information, and through that explicitness makes it possible for non-human processes
(such as computers) to “understand” and make use of the resulting digital object in ways that take
advantage of its self-knowledge about its own structure and content. A manuscript letter marked
in this way can carry with it the knowledge of which words have been deleted or replaced by the
author, and a software system can use that knowledge (for instance, to generate a final edited
version of the text). A collection of such manuscripts, if marked consistently, can yield a systematic
analysis of their authors’ revision practices.

Text markup of this kind, as practiced in the digital humanities world, sits at the juncture of
humanities scholarship—textually nuanced, exploratory, and introspective—and digital
technology, with its emphasis on formalism, consistency, and upward scalability. As a result its
norms carry a double weight: they must achieve some kind of technically actionable uniformity,
but they must also express useful scholarly concepts and differentiations. They draw their
functional precision and power from the domain of technical norms, and also their capacity to
broker collaborative exchange at a practical level. But they draw their relevance and intellectual
usefulness from the domain of disciplinary norms, which as we have seen are fundamentally and
on principle resistant to standardization, and in fact might be said to thrive like yeast in a state of
fermentation (though without drowning in their own byproducts).

Debates about how to balance these competing concerns in the markup community—and
particularly in the community of the Text Encoding Initiative—are lively and sustained. The goals
of standardization and facilitated interchange were articulated by the planners of the TEI at the
earliest stages of their discussion in the Poughkeepsie Planning Conference of 1987, as documented
in the first of the so-called “Poughkeepsie Principles”:

Poughkeepsie Principle 1: The guidelines are intended to provide a standard
format for data interchange in humanities research. (TEI, 1988)

These goals have remained strongly in view during the succeeding years, during which the TEI
Guidelines have undergone sustained development and use and have become one of the most
deeply researched features of the digital humanities landscape. At the same time, the challenges of
maintaining the double force noted above—the power of both strong formalism and expressive
nuance—have become much more vividly apparent. For some developers, the attempt to maintain

expressiveness simply undermines the goal of interchange and places the entire enterprise at risk.
Characteristic of this view is the following quote from a 1997 posting by Mark Olsen to the
Humanist discussion list, in which he is complaining about the laxity and permissiveness of the
TEI Guidelines as a technical standard, a few years after the first public release of those Guidelines:

The real test of an INTERCHANGE format, however, is ... that the format can be
automatically converted TO and FROM any number of systems with a minimum
of effort. My principal objection to TEI is that it is by far the most difficult
representation to convert into something else, because of its expressive power. The
more tightly constrained a specification, the easier it is to write converters. It is a
BALANCING act, which I do not believe the TEI community has -- because of its
make-up and structure -- really tried to perform. (Olsen 1997, emphasis in
original)

This position has also been strongly argued in subsequent debates about the nature and value of
what is termed “TEI conformance”: that is, the formal methods by which adherence to the TEI
Guidelines can be assessed. The rationale for the current definition of conformance, in which
conforming documents must be a strict subset of the unmodified TEL' focuses on several practical
goals involving the exchange of data:

* interchange or integration of documents amongst different researchers or users;
* software specifications for TEI-aware processing tools;
* agreements for the deposit of texts in, and distribution of texts from, archives;

* specifying the form of documents to be produced by or for a given project.
(TEI 2007, 23.3)

The countering position, equally strongly felt and argued, is that one can only achieve such strong
standardization and uniformity by eliminating a degree of intellectual depth and nuance that is
essential to the intellectual quality of the enterprise. Michael Sperberg-McQueen, one of the
original editors of the TEI Guidelines, responded to an earlier version of Mark Olsen’s plea above
by offering him an extremely reduced and simplified subset of the TEI and

demonstrating, by a reductio ad absurdum, how reducing a tag set to this size ...
forces one to omit too much material which can be useful in the encoding of
virtually any text, and which is absolutely essential for dealing rationally with
some texts. (Sperberg-McQueen 1995)

Sperberg-McQueen's point about textual complexity is even more true when we consider the role
markup plays in representing not just texts but our views about texts: our methodological
assumptions, our editorial decisions, our critical debates. The prospects for representing these in a

' That is, they must use only elements and element structures that are defined in the unmodified TEI; any
conforming TEI-encoded document must be valid against the unmodified TEI schema or be transformable
into a valid document with no loss of information.

simple and uniform manner are generally acknowledged on both sides of the debate to be
extremely poor. Clearly these arguments would not apply to projects whose goals for text
representation are quite simple (for instance, digital library projects where the transcription serves
only to provide searchable full text to accompany a page image). But for projects in which the TEI
functions as a representation of scholarly work, the accommodation of nuanced intellectual
expression is clearly crucial.

In debates about this issue, it is usually assumed (as Mark Olsen assumes) that a strongly enforced
uniformity will facilitate collaboration, and conversely that heterogeneity and dissent will militate
against it. Our instinct may thus be, in the context of digital standards, to treat disciplinary debate
as the opponent: something that needs to be eliminated or ignored in order for collaboration to
proceed. I would like instead to suggest otherwise: that in fact the humanities dimension of digital
humanities work makes this elimination impossible and also undesirable. But it will help if we can
first establish a more nuanced and carefully structured view of the precise role of dissent within
our collaborative ecology.

Collaboration and Dissent

One place where collaboration has been examined from a philosophical and political perspective
(rather than a business-efficiency perspective) is in theories of collaborative learning, and John
Trimbur in a 1989 essay entitled “Consensus and Difference in Collaborative Learning” provides a
particularly thoughtful and critical analysis of some key points: he is considering the dynamics of
consensus within learning environments but also making a larger point about the way that social
negotiations take place. Trimbur marks consensus as central to collaboration, but for him, a crucial
element of the discursive practice of consensus is dissent: not just the need to democratically
acknowledge a minority view, but the need to base consensus on “collective explanations of how
people differ” (610). This “dissensus” is a representation of fractures within the discourse: an
acknowledgement of the existence of the periphery, the discourses out of power:

We will need, that is, to look at collaborative learning not merely as a process of
consensus-making but more important[ly] as a process of identifying differences
and locating these differences in relation to each other. The consensus that we ask
students to reach in the collaborative classroom will be based not so much on
collective agreements as on collective explanations of how people differ, where
their differences come from, and whether they can live and work together with
these differences. (610).

Dissensus thus functions as a way of establishing a critical relationship between the consensus and
the dissenting voices. In other words, dissent occupies an informationally important and
illuminating position in the universe: “not as the goal of the conversation but rather as a critical
measure to help students identify the structures of power.” With this understanding of the role of
dissent, Trimbur argues, we can finally see consensus not as a rational, realizable goal (akin to
finding out that we really all do want the same thing) but rather as a recognition of the
“inexhaustibility of difference” and a will to “organize the conditions in which we live and work
accordingly” (615).

This argument offers a very interesting perspective on standards development, and one that
understandably doesn’t get much play in that domain. However, the digital humanities is in a
position to attend to the fact that standards do arise from and represent power structures; they
represent the functional homogenization that is one outcome of “community”: the consent to being
homogenized. And as a community-driven standard arising from the digital humanities, the TEI is
rare (but perhaps also characteristic) in taking seriously the legitimacy of dissenting views while
also seeking a technically functional outcome. It needs such views to exist—indeed, it relies on
their existence as the driving force behind its own onward progress—but it wants them to exist in
relation to the community at large, as part of the discourse rather than apart from it.

We can now usefully circle back to comment on the word “standard” in the context of Trimbur’s
observations, especially since in an important sense the TEI is not in fact a standard according to a
strict definition of the term. The sphere in which strict definitions operate with relevance to the
digital humanities is that of governmental and para-governmental standards (such as the
American National Standards Institute), international non-governmental organizations (such as the
International Organization for Standards), and industrial standards bodies (such as the World
Wide Web Consortium). Standards promulgated by such bodies have the force, if not always of
law, at least of definitional hegemony: a standard for measuring photographic film speed or tuning
frequencies sets the parameters within which all activities will effectively operate.

Standards by their nature thus impose a uniformity that, in effect, creates consensus by fiat. Once
they are in place, we obey them because we value the consensus they represent (and the cohesion
and practical efficiency they enable) more than our own individual right to do things differently.
Furthermore, within the domain of digital humanities, adherence to (open) standards is framed as
a kind of good citizenship, the necessary precondition for a free interchange of data. The world
without standards is a world of chaos—a post-Babel cacophony of conflicting and mutually
unintelligible voices. But it is also a world of plurality, and the transition from that plurality to the
uniformity of the standard is worth noting as an important change of state. The web site of the
British Standards Institution includes this succinct statement on the nature of consensus standards,
which places its emphasis tellingly on this exact point:

All formal standards are developed with a period of public enquiry and full
consultation. They incorporate the views and expertise of a very wide range of
interests from consumers, academia, special interest groups, government, business
and industry. As a result, standards represent a consensus on current best practice.
(BSI 2010)

The deftness with which we move from that “wide range of interests” (which has a double force:
both a variety of differing interests, and a representative set of interests) to the “consensus on
current best practice” elides what must necessarily have happened: the elimination or bypassing
by one means or another of that original plurality of views.

In fact, hard-headedly, standards present us with a balance or tradeoff: they represent an operation
of power, which may have been exercised with more or less attention to minority opinions, and
may place more or less constraint on our meaningful freedom of action, and may provide more or
less practical benefit to us and to society. Different standards bodies and different standards sit at
different points along these three axes. It is hard to feel very put out about not being consulted

about the standard for measuring the twist of single-ply yarn, but many of us may feel a greater
stake in the ISO standard for representing the sex of humans, in which the permitted values are 0
(not known), 1 (male), 2 (female), and 9 (not specified) (ISO 2004). But even the best arrangement of
these factors—the most open process, the least constraint, the greatest practical benefit—in the end
does represent as “consensus” an end-product about which there actually has been, and may still
be, disagreement. There is no need to standardize what no one differs on.

Collaboration and the TEI

The TEI occupies a distinctive position within this landscape—first of all, because it does not claim
the status of a standard for its Guidelines. They “make recommendations” about methods of
representing textual sources in digital form, but these recommendations have their force solely
within the sphere of activity of the TEI itself: in order to claim to be using the TEI Guidelines, you
have to use the TEI Guidelines. This internal regulation of the TEI community positions the TEI as
a standards body for that community of usage, and for this reason the TEI is often described as a
“community standard,” both in its own self-description and by others. But this terminology
deserves some scrutiny because, even thus qualified, it aligns the TEI's guiding enterprise with
goals of uniformity and consensus that, as we have seen above, have proven problematic from the
outset. In order to understand how this “community standard” operates as a standard within the
TEI community and hence as a collaborative tool, we need to understand the role that dissensus, in
Trimbur’s sense, may play in its formation and use.

Encoding standards like the TEI are foundationally collaborative technologies: they presume the
need and the desire to coordinate shared work, to generalize individual insight to a community,
and to support the extension, critique, and reuse of ideas and techniques. But how, concretely, does
the TEI figure in a typical digital humanities project? A simple example would be a pair of scholars
who are working together on a digital edition of a very long manuscript that must be transcribed
and annotated: for instance the Almanacks of Mary Moody Emerson—a 1000-page manuscript
currently being edited and encoded by Sandra Petrulionis and Noelle Baker in collaboration with
the Women Writers Project (WWP) at Brown University. If they divide up the manuscript, each
taking a section, their agreement on a shared encoding system such as the TEI makes it possible for
them to work together while also working separately: the encoding standard diminishes the need
for day-to-day consultation on details of digital representation. When they combine their work, it
should form a consistent whole, and when they hand it at last to the WWP for publication, it
should fit in with the other materials in our collection that have also been prepared in this way.

In this typical kind of collaboration, the parties to the shared effort know of each other, and their
intention to work together is explicit; in effect, a collaborative vector is established between them
that operates in real time, mediated by their use of the encoding standard. As a more complex
example, however, take a project like the Electronic Archive of Greek and Latin Epigraphy, which
is a federation of epigraphic databases: online collections of ancient inscriptions on stone, metal,
clay, and other durable surfaces. Scholars in several different countries want to be able to
contribute to such collections, knowing that in doing so they are contributing to a single, vast,
comprehensive resource rather than to one of many that are small, isolated, and partial. In order to
accomplish this goal, they need a common standard for transcription and editing, and in fact this
group is now using the TEI as the basis for their digitization efforts: the TEI-based epigraphic

transcription standard is known as EpiDoc. In this collaboration, although the scholars involved

know that they are contributing to a shared resource, they don’t necessarily feel themselves to be
working at all times directly with all of the other scholars: the model is more of a hub and spokes
rather than a direct person-to-person network.

This kind of indirect collaboration leads us in turn to a third case which has particular importance
for the digital humanities. Imagine the same hub-and-spokes model, but now let us think of the
spokes as extending not only into space but into time as well. The recent rise of interest in
humanities data curation demonstrates how crucial these longitudinal collaborative vectors can be.
Digital resources that we create today do not exhaust their value in the first few years of use; on the
contrary, unlike research in the sciences which has a fairly deterministic half-life, humanities
research materials have a horizon of usefulness that is much more complex and unpredictable and
prolonged. The British Women Romantic Poets project is a substantial collection of Romantic-era
poetry by women created at University of California, Davis in the late 1990s; it has been available
on the web in its original form for years.” But in addition, this project contributed texts from their
collection to the WWP’s online collection, Women Writers Online, and the BWRP collection is now
also included in NINES, the large federated collection of resources for the study of nineteenth-
century literature.” The WWP and NINES are taking advantage of the intelligibility of the BWRP
data—its use of standards like the TEI—to do things with these materials that were not specifically
envisioned by their creators. But the intelligibility of the data in itself—the intention that it be
reused—constitutes an important collaborative gesture. The “collaboration” here is real and
important and yet takes place across time and without direct interaction.

This kind of indirect collaboration is at present rare—and indeed, there is a strong anecdotal
“literature” attesting to the difficulties in accomplishing it—but it exercises a powerful mythic
influence on the ways we think about how we create digital humanities resources and why. As
digital humanists we are committed to encoding our data in a standard way so that it can be
shared, so that it will remain comprehensible: in fulfillment of an implicit contract with unknown
scholars of the future who need to know what we know and understand what we have done. But
at the same time, as we’ve already seen, as digital humanists we know that a crucially important
dimension of that representation is precisely the disciplinary norms we adopt, and these we know
to be founded on debate rather than on straightforward agreement. We can assume, in other
words, that our future collaborators will disagree with us on some fundamental point, while
nonetheless wishing to make use of what we have done. So the question then is: what needs to be
expressed in order for this kind of longitudinal collaboration—one in which the first collaborator
has to play their full hand before the other even comes into the game—to work? Is there any
conduit through which such a negotiation can take place?

There is, but it takes a complex form. What is needed in this case is not simply a common language
for data representation, but more importantly a common mechanism for negotiating about data

? See http://digital.lib.ucdavis.edu/projects/bwrp/.

* NINES is the Networked Infrastructure for Nineteenth-Century Electronic Scholarship,
http://www.nines.org.

representation. And that, I would like to argue, is exactly what the TEI properly provides: not a
perfect language for collaboration, but a—let us call it a functional—mechanism for negotiating
about language: in fact, a mechanism for negotiating dissent.

TEl Customization

In order to give some concreteness to this assertion, we need to take a brief excursus into the
details of the TEI customization mechanism, which is the form given to this negotiation process.
The TEI encoding language is not a single, unitary thing: it is a vast landscape of possibility that
covers domains as remote as manuscript description, dictionaries, drama, oral history, linguistic
corpora. The TEI community as a whole needs to be able to represent all of these things, but any
individual project needs just a selection: manuscripts and drama, say, or verse and scholarly
editing. So the TEI language is represented at the most basic level as a set of possibilities: a single
source file (called the “ODD”*) that represents the entire landscape of the TEI in potential terms.

To represent our own, more selective view of that landscape, we need another piece of
information, a separate file which is called an ODD customization. The ODD customization file
represents the world of an individual user or project: the set of choices through which the
individual adapts the TEI schema to local usage. These choices may simply be selections from
among the various parts of the TEI (elements to encode manuscripts, elements for scholarly
editing, elements for representing dictionaries or drama or verse). They may also take the form of
added constraint: for instance, a project may wish to limit the vocabulary used to describe poetic
genres. But they may also be extensions: added elements for things that the TEI cannot yet
represent, or changes to TEI elements to reflect local needs.

From these two files (the main TEI ODD, and the ODD customization), with appropriate
processing, one can then generate a schema that expresses the TEI landscape as viewed through
the lens of the individual application. And by comparing any two (or more) customization files,
one can also in principle gain an understanding of how two projects differ in their representation
of data. There are thus several potential vectors of difference or dissent that can be expressed here:
between the individual researcher or project and the TEI community as a whole (expressed
through actual changes and extensions to the unmodified TEI language), and also between
different individual researchers or projects.

To give a concrete example, let us take the Women Writers Project again: a long-standing TEI
project with a somewhat idiosyncratic set of texts, experimental views on text encoding, and a
strong collaborative instinct. The WWP’s TEI customization captures a number of important
things:
* the specific sections of the TEI that the project actually uses (for instance, the TEI module
for names and dates, the module for linking)

* the controlled vocabularies used in classifying things like verse structures

* The origin of this terminology is whimsical: because the ODD file represents both the schema itself and the
documentation of the schema, “one document does-it-all”.

* the changes the project has made to individual textual structures, to accommodate the

idiosyncrasies of the WWP’s texts or of their thinking about them

So in this case, the customization immediately serves two important functions: first, to express and
document the rationale behind the WWP’s encoding practice; and second, to express in formal
terms the relationship between that practice and the TEI guidelines themselves.

Imagine, though, that in a few decades, after the project has run its course and its data is part of the
Brown University repository, another group of researchers (perhaps working on women’s writing
in French) wants to use this data, in combination with their own, to compare ideas of genre across
languages. In the wild, this project is utterly hopeless. But if both groups are using the TEI, the
process is eased: the peculiarities of each project’s encoding are expressed as points of dissent from
the TEI itself: in other words, from a known quantity. In areas where the WWP does not disagree
with the TEI, it uses the standard terms and structural concepts. The second project, coming later,
is able to use the standard TEI markup present in the existing project data unmodified; from the
WWP’s ODD file they can also see explicitly where this encoding dissented from the TEI
consensus, and assess how these points of difference accord with their own methods (and modify
the WWP data if necessary). They can also bring in data from other TEI projects on the same basis:
because all of the dissent has been organized into a set of vectors all pointing in towards the same
hub (instead of being expressed combinatorially), the challenge of harmonizing the data and
discerning the points of essential agreement and disagreement is significantly diminished (though
of course not eliminated).

What is taking place here is a form of negotiation that manages in a subtle and bizarre way to be
bi-directional even though it takes place across the passage of time. Each project, through its TEI
customization, places its data in an explicit relation to the standard, with any reservations or
qualifications clearly expressed: thereby deliberately putting the data “up for collaboration”. What
is distinctive about the TEI customization mechanism is that it formalizes dissent in this way, in
relation to the standard, and allows its vector to be traversed in two directions. The same path that
leads away from the unmodified TEI standard towards the individual application (from generality
to specificity) can also be followed back to the center again. This traversal can be effected both by
human beings and by computer processes. Information concerning what has been changed and
why can be expressed in human-readable form and may serve as a valuable support in
understanding the methodological choices that underlie a project's encoding practice.

Similarly, the ODD customization file can serve as the basis for automated analysis of difference
and similarity of encoding methods. By analyzing a set of customization files, for example, we
could identify all projects from a large set that use the same set of TEI modules or remove the same
set of elements. We could generate a list representing the greatest common set of values for a given
vocabulary (such as poetic genres) across a group of projects and also identify the values that are
unique to each project, or identify the range of new elements created by each project, together with
their closest TEI equivalents.

Interoperability and Collaboration

Taken as a whole, the customizable approach taken by the TEI permits the standard to function
(both socially and technically) as an agreement at many levels—on the intention to treat data as a
sharable and preservable resource, on the value of shared data standards, on the descriptive utility
of this particular approach to modeling humanities texts, and on the impossibility of creating a
single descriptive model that will satisfy all needs.

This last point may seem like a significant or even fatal concession, and it may be appropriate to
consider here whether collaboration, in the absence of a single descriptive model, is really possible
at all. Would it not enhance the collaborative effect in the examples given earlier, for instance, if
instead of the elaborate articulations of the customization mechanism we had a simple and
uniform standard for exchanging data in an unambiguous manner? Is this not in fact the mission
with which the TEI was initially begun? Martin Mueller put the case for the value of uniformity in
a presentation at the 2008 TEI conference:

To compare is to look for significant difference, but without comparability
difference cannot be identified in the first place....consistent encodings across
many texts in a heterogeneous document space have a greater scholarly pay-off
than finely grained encodings in closely defined but not necessarily compatible
environments. (Mueller 2008)

From this perspective, in which the goal of interoperability is given primacy, the heterogeneity of
different encoding approaches looks simply like grit in the works.

The challenge here is to understand the relationship—and the difference—between interoperation
and collaboration. Interoperation is a functional property of data and tools: a measure of how
seamlessly a new data set will perform within a system not explicitly designed for it. If have
written a stylesheet that expects a certain kind of TEI data, and your data flows through it without
producing error messages or an unprocessable residuum, then your data is interoperable with my
stylesheet.

Or is it? What if our measure of seamlessness here is not the unimpeded working of the tool, but
the meaningfulness of the output? Take as an example a stylesheet that is designed to generate an
index of first lines in poetry. It looks for the first “verse line” child of each “poem”, extracts it, and
sorts the resulting list. Imagine now that my collection of poems includes some with epigraphs or
introductory notes following the poem title. If the schema for poetry does not include separate
markup elements for these features and I cannot alter it, I may be compelled to represent them as
part of the poem itself, using the element designated for verse lines. The stylesheet, none the wiser,
obediently identifies these and extracts them as “first lines” without complaint, and the resulting
index contains a mix of first lines and things that are not first lines but cannot be distinguished
from them. From the standpoint of interoperability the error is hard to detect. The data itself is
structurally indistinguishable from what the system anticipates; the problem is simply that the
data is lying.

This problem is not a belated discovery, but a deep tension that has inhabited the design of the TEI
from the start. Let us now recall, from earlier on, Poughkeepsie Principle 1: “The guidelines are
intended to provide a standard format for data interchange in humanities research.” This seems

10

like an unambiguous statement about the primacy of interchange and its dependency on concepts
of standardization. But in the “Design Principles for Text Encoding Guidelines” which comment
and expand on these principles, the editors of the TEI Guidelines note concerning this point:

For interchange, it must be possible to translate from any existing scheme for text
encoding into the TEI scheme without loss of information. All distinctions present
in the original encoding must be preserved. (TEI 1988)

Meaningful interchange and interoperability thus require us to attend not only to the structural
uniformity of our data, but to its semantic uniformity as well’: in other words, the distinctions
being preserved in one encoding must be mapped onto the distinctions that are relevant in another
encoding. The brief admonition that “all distinctions present in the original encoding must be
preserved” is in fact a statement in support of the distinctiveness of that “original encoding” and
the legitimacy of its distinctions: the role of the interchange format is to permit translation, not to
efface difference. As Sperberg-McQueen’s admonition to Olsen insists, uniformity comes only at
the cost of eliminating what is “absolutely essential for dealing rationally with some texts.” Fifteen
years after that exchange, with digital editing now an important application of the TEL we might
expand this point to read “...and for dealing articulately with some editorial problems.” The
uniformity that cannot be assumed in our primary sources is equally rare in our scholarly methods.
To collaborate effectively under these circumstances is thus a matter not of enforcing an artificial
uniformity through which vital distinctions are elided, but rather of supporting the real and
accurate exchange of the data in which we have a strong stake. The fundamental question, in other
words, is whether we really want to hear what our collaborators really have to say.

This is not an argument for diversity for its own sake. In a strong collaborative ecology, the
corollary of respecting each others’ differences is respecting the commonalities that draw us into
joint work in the first place. Structurally speaking, the TEI customization mechanism is as well
suited to creating schemas that reflect a well-honed, tightly constrained expression of those
commonalities as it is to expressing individual divergences from the consensus. But while a well-
constructed schema can represent and support a consensus of this kind, it cannot create it. A
standard like the TEI, in other words, is not the appropriate mechanism for producing a successful
collaborative agreement except in cases where the quality of the data (its semantic nuance or its
methodological rigor) is of no consequence. It is, rather, an extraordinarily effective mechanism for
representing such an agreement once it has been made by the collaborating parties.

This point complicates what is commonly assumed about data standards in the digital humanities:
that they support collaboration unproblematically, and that the better we standardize, the stronger
our collaborations will be. Representational systems like the TEI operate in a domain where our
descriptions, in their complexity and their consequentiality, reach towards the condition of human
language and thought. This complexity is a strength and a measure of the intellectual potential of
these representations, not a weakness. The challenge—as with human language—is to achieve
mutual intelligibility while still being able to say what is worth saying. Collaboration, too, walks

> T am indebted to my colleague Syd Bauman for sustained discussions of this point that have helped me
understand its significance.

11

this precarious line between egoism and altruism, between private insight and public
communication, between local nuance and common ground. In this respect, the TEI is not simply
tool for collaboration but a methodological reflection of its structure at the deepest level.

Works Cited

Allen, C. 2007. Guidelines for Supporting ISO Code Sets. Available at: http://ns.hr-xml.org/2_5/HR-
XML-2_5/CPO/GuidelinesForISOUtilities.html [accessed: 20 May 2010].

British Standards Institute. 2010. What are the differences between consensus and commissioned
standards? Available at: http://www .bsigroup.com/en/Standards-and-Publications/About-
standards/Differences-between-Consensus-and-Commissioned-standards/ [accessed: 20 May
2010].

Burnard, L., Bauman, S., eds. 2007. Guidelines for Electronic Text Encoding and Interchange. TEI
Consortium. Available at: http://www .tei-c.org/release/doc/tei-p5-doc/en/html/index-toc.html
[accessed: 20 May 2010].

ISO. 2004. Information technology — Codes for the representation of human sexes. Available at:
http://standards.iso.org/ittf/Publicly AvailableStandards/c036266_ISO_IEC_5218_2004(E_F).zip.
See also http://en.wikipedia.org/wiki/ISO_5218 [accessed: 20 May 2010].

Mueller, M. 2008. TEI-Analytics and the MONK project. TEI annual conference, London,
November 6-8, 2008. Available at:
http://www .cch kcl.ac.uk/cocoon/tei2008/programme/abstracts/abstract-169.html [accessed: 20
May 2010].

Nunberg, G. 2009. Google’s book search: a disaster for scholars. The Chronicle of Higher Education.
[Online] August 31. Available at: http://chronicle.com/article/Googles-Book-Search-A/48245/
[accessed: 20 May 2010].

Olsen, M. 1997. Humanist Discussion Group, Vol. 10, No. 895. Available at:
http://www digitalhumanities.org/humanist/Archives/Virginia/v10/0515 .html [accessed: 20 May
2010].

Sperberg-McQueen, C. M. 1995. Preface to TEI Bare. [Online] Available at: http://www tei-
c.org/Vault/Bare/ [accessed: 20 May 2010].

TELI. 1988. Design principles for text encoding guidelines.” TEI ED P1. Available at:
http://cmsmeq.com/1990/edp1.html [accessed: 20 May 2010].

Trimbur, J. 1989. Consensus and difference in collaborative learning. College English 51.6 (October
1989), 602-616.

a

12

Extreme Markup Languages 2002 Montréal, Québec
August 6-9, 2002

Drawing inferences on the basis of markup

C. M. Sperberg-McQueen David Dubin
World Wide Web Consortium University of lllinois at Urbana/Champaign
Claus Huitfeldt Allen Renear
Avdeling for kultur, spréak og University of lllinois at Urbana/Champaign

informasjonsteknologi

Abstract

Various authors have sketched out proposals for identifying the meaning, or
guiding the automated interpretation, of markup, sometimes with the goal of
using the information expressed by markup to guide the extraction of information
from documents and using it to populate reasoning engines. We describe one
approach to the problems of building a system to perform such a task.

http://www.renderx.com

Drawing inferences on the basis of markup

Table of Contents

1 INEEOAUCHION. ...c.ouiiiiiiiiieiieiieicete ettt ettt st ettt et et ebeebeeae e 1
2 THE PIODICIML. ...ttt ettt et e bt e e bt et e s bt e e e bt en e e e b e eteeaee bt eneesaeeneesaeensesaean 2
B N 1o 21 101 o) [SRS 2
2.2 A LoZICal APPIOACKH.iitiiiiiiiie ettt ettt sttt st s 3

2.3 KinNdS Of SENTEIICES......eeuvertieniiriieieniieteriteteeitete ettt ettt sttt st ae st st esene bt eene b ennesbeenaesaee 3

2.4 Two approaches: inference and direct inStantiation............ccoeeveereeriereeneneereneenieneeeeeeenne 6
2.4.1 Inference-driven apProaCh..........cocuerueeiirieriiniere ettt 6

2.4.2 Direct-instantiation apPPrOACH..........ceouiiuierieriertieieiee et ete sttt ee e e e ae st eeeeeeens 6

3 DOCUMENE T@PIESENEALION. c...veuveutententeatententeiteiteateteeteeteeteetesbesae st e beaesseseensemteneeseeneeneeueesesuesaeesenseneens 9
4 ProPAZAtION SEIEIICESeeuvteruteeieeeieeriteeteesteeesbeesttesteesatesseesseeeseesseeebeesaseeseesaseenseesaseensaesasesnses 11
5 Application sentences and further iINfErenCes.ovvirriierieriieiiieiieee et 11
6 Skeleton sentences and MAPPING TULES.....c..eoeeruiriiririiiriiiireeeeetes ettt 15
7 SOME CRALIEIZES. ..ottt ettt ettt et ettt e sbe et sbe et e s be et s bt et e ebeenteene 17
FOOTNOLES ...ttt sttt e sb ettt e bt st e s bt e st e e s bt e eabe e baeeaeenbeesabeenneenaee 18
BIDIHOGIAPNY ...ttt ettt st b e e e nen 19

THE AUTIOLS......iiivieee et e et e e e e ear e e e eeetraeeeeeeetareeeeeeeestsseeeeeentrseeeeeennraeeeas 20

http://www.renderx.com

Drawing inferences on the basis of markup

Drawing inferences on the basis of markup
C. M. Sperberg-McQueen, David Dubin, Claus Huitfeldt, and Allen Renear

§ 1 Introduction
Text encoding has traditionally promised to make explicit our understanding of (or: theories about)
adocument ([Coombs et al. 1987] [Coombs et al. 1987], [Sperberg-McQueen 1991]). Well-designed
SGML/XML markup languages such as Docbook [Walsh/Muellner 1999] or the TEI
[ACH/ACL/ALLC 1994] appear to be fairly successful at this. However, a close look reveals that
there are limits to the degree of explicitness that can be achieved with current encoding languages.
The problem may be traced to the fact that although SGML/XML-based markup languages provide
explicit rules for syntactic well-formedness and validity, they provide nothing analogous for semantic
correctness. As a result they are reasonably well suited for generating data structures, but are not, at
least not without further development, as effective at expressing interpretations [Renear 2001]. And
many developers of programming systems have wished they had a mechanism for specifying, more
exactly than XML 1.0 DTDs allow, exactly what application data structures or what tables and
columns in a SQL database are to be built from XML data when it is received.

Our immediate area of concern is the task of providing a clear, explicit account of the meaning and
interpretation of markup.

Scores of products and projects which use XML and SGML assume implicitly that markup is
meaningful, and use its meaning to govern the processing of the data. A number of authors have
described systems for exploiting information about the meaning or interpretation of markup; among
those most relevant to the work described here are [Simons 1997], [Simons 1999], [Welty/Ide 1997],
[Ramalho et al. 1999], [Sperberg-McQueen et al. 2001a], [Sperberg-McQueen et al. 2001b], and
[Thompson 2001].

There are a variety of reasons to be interested in this problem. Better understanding of the meaning
properly assigned to markup seems certain to make it easier to write better, smarter tools for creating,
managing, and exploiting markup. [Ramalho et al. 1999] make a strong case that it will enable
substantially improved validation and quality assurance, enabling automated systems to detect a
large number of errors in the use of markup or in the data which cannot be detected by purely syntactic
or datatype-oriented methods. [Welty/Ide 1997] argue that a more formal approach to markup
semantics will dramatically improve information retrieval. Even if the kind of logical inference they
have in mind proves too time-consuming to perform at query time, it may be helpful in reducing
inessential variation in markup practice within a collection, or in masking the variation in markup
within heterogeneous collections [Schatz et al. 1996]. For non-documentary uses of XML, the
meaning of markup may be seen in its mapping to target data structures — or rather the meaning
can be seen in the range of target application data structures the markup may legitimately be mapped
to; this position has been put succinctly by Henry Thompson in discussions of earlier work on this
topic, and underlies the work reported in [Thompson 2001]. On a purely practical level, experience
with systems of the kind we describe here can be expected to provide useful information about how
to make the documentation of markup applications clearer and more useful.

Our main motivation for this work, however, is not so much its manifold practical applications as
its intrinsic interest.

In earlier work [Sperberg-McQueen et al. 2001a], we proposed to identify the meaning of markup
in a document as the set of inferences licensed by it' and outlined a ‘straw man’ proposal for defining
the proper interpretation of markup in a given markup language and formulating certain simple rules
for mechanically generating the proper inferences from documents marked up in that language.
Implementation of the straw man proposal demonstrated that the straw man proposal is too simple

Extreme Markup Languages 2002 page 1

http://www.renderx.com
Julia

Drawing inferences on the basis of markup

to explain real markup languages; its rules lead to a number of false inferences. In [Sperberg-McQueen
et al. 2001a], we sketched in general terms how a better account of meaning and interpretation in
markup could be constructed; this paper reports on work toward the concrete realization of one part
of that ‘framework’ model and will outline some of the problems encountered in specifying the
inferences licensed by commonly used DTDs.

§ 2 The problem

The framework outlined in [Sperberg-McQueen et al. 2001a] includes:

* some representation of the document, probably in a form which can be used with some
existing inference system. In our current work, we use a Prolog interpreter as our inference
engine.

* aset of skeleton sentences. These are sentence schemata or patterns which can be used to
form sentences which express the meaning of each construct in the markup language. A
skeleton sentence is like a natural-language sentence, or a Prolog predicate, or an expression
in some other formal system, in which certain words or items have been replaced by blanks.
When the blanks are filled in properly, a normal sentence in the language is the result.
(Some readers will be reminded of the game marketed a few years ago under the name
Mad Libs.) In the systems we describe here, the blanks are typically to be filled in with
information from the document itself, and each blank is associated with a deictic expression
showing how to fill it in.?

* some language, possibly a rather small one, in which to write the deictic expressions which
can be associated with the blanks in the skeleton sentences; in common languages like
Docbook, HTML, and TEI, it is easy to foresee the need for expressions meaning “the
contents of this element”, “the value of this attribute”, “the nearest ancestor of type bibl”,
“the value of the xml:lang attribute on the nearest ancestor element which has a value for

it”, etc.

* some categorization of predicates according to the rules governing inferences from them.
For example, some properties of elements are inherited by descendant elements, and others
are not — a satisfactory account of the meaning of markup should capture this general
distinction and others like it.

* some generic routines for generating statements about the document by extracting suitable
information from the document and using it to fill the blanks in the skeleton sentences,
thus forming full sentences in the target language.

* (optionally) rules allowing further inferences. These are often not closely tied to specific
markup of specific document instances, but may express more general rules about properties
expressed by markup (e.g., “if something is an author, and not identified as a corporate
author, then it is a person”, or “if something is a person, then it is human”).

Several of these components will be discussed separately below.

2.1 An example

To illustrate the basic ideas, let us consider as an example the sample purchase order used in the
Primer for W3C XML Schema 1.0 [Fallside 2001]. If the meaning of markup is to be found in the
set of inferences we can draw from it, what inferences can be drawn from the sample purchase order,
and how?

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">
<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>

page 2 Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

<state>CA</state>
<zip>90952</zip>
</shipTo>
<billTo country="US">
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>0ld Town</city>
<state>PA</state>
<zip>95819</zip>
</billTo>
<comment>Hurry, my lawn is going wild!</comment>
<items>
<item partNum="872-AA">
<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>
</item>
<item partNum="926-AA">
<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>
</item>
</items>
</purchaseOrder>

The sample document above shows an order for a lawnmower and a baby monitor; the items are to
be shipped to one Alice Smith of Mill Valley, California, and billed to one Robert Smith of Old
Town, Pennsylvania.

In the following sections, we will illustrate the discussion with examples drawn from this document.

2.2 A Logical Approach

Our general approach to the problem of representing the meaning of markup is the construction of
aformal logical system. This system will serve both a theoretical objective: illuminating zow document
markup licenses inferences; and one practical one: supporting the mechanical calculation of the
inferences.

As with most efforts to formalize a domain area we do not begin from scratch, but rather accept the
expressive devices and deduction rules of an existing system of predicate logic, and supplement
those with (i) constants distinctive to our domain of interest; and (ii) a set of ‘axioms’ or ‘premises’
which reflect not fundamental truths about logic but rather fundamental facts about markup about
which we wish to reason.

In translating crucial propositions from another notation into a more purely logical notation, we are
following the practice of most work on programming-language specification and semantics; cf.
[Guttag/Horning 1993], which explicitly makes it a goal of the Larch system to provide a basis (i.e.
an axiomatic basis) for reasoning about programs. The notion of the meaning of some sentence as
the set of inferences to be drawn from it is also borrowed from this field; it came to our attention
from [Turski/Maibaum 1987].

2.3 Kinds of sentences

We provisionally identify several kinds of sentences in our system. In this section we list these kinds
and give intuitive characterizations of each. We also give examples of what such sentence would
mean, using a stylized English sentences that corresponds naturally and unambiguously to the
expressions of predicate logic. Then the following sections we explore Prolog representations that
support inferencing. Rigorous formal characterizations of these sets of sentences are underway and
will be reported on in later publications.

image sentences These directly translate the marked up document into the notation of the
logical system. In practice, they constitute a more or less literal and

Extreme Markup Languages 2002 page 3

http://www.renderx.com

Drawing inferences on the basis of markup

mechanical translation from a given markup notation (e.g., XML) into a
set of sentences. These sentences ascribe certain properties — such as
having a certain generic identifier or a certain attribute name and value
— to certain objects which map 1:1 to the elements, attributes, and so on
of the input document. Strictly speaking the objects so described are not
XML elements but the result of mapping XML elements (or element
information items) into our logical system. We will call these objects
images of the document instance; the information items to which the
images correspond we will call their pre-images. For our purposes, we
regard the translation into images sentences as sufficient if by working
from the logical form alone we can construct an XML document with the
same infoset [Cowan/Tobin 2001] as the original document.

Examples of image sentences:

* g has the generic identifier “authorname”.
* g has the content “Alan Turing”.
* a has the value “de” for the lang attribute.

The graph structure of the document instance must also be represented if
the image sentences are to capture the basic information set of the input
document. The following are thus also examples of image sentences:
* The first child of a is b.
* b has an immediately following sibling; this immediately
following sibling is c.

property rules These associate specific properties — such as being a quotation, being
in the German language, or being a name — with the generic identifiers
and attribute names of a particular markup vocabulary. Where appropriate
these rules will also specify the conditions for inheritance of the property.

Examples of property rules:
 If x has the generic identifier “authorname” then x is a
name-of-an-author.

* If x has the value “de” for a lang attribute, then: x is in the
German language, and any descendent y of x is in the German
language unless there exists some element z which is both a
descendent of x and either an ancestor of y or identical to y and
z has a lang attribute with a value other than “de”.

propagation sentences These sentences result from applying a property rule to an image sentence:

Image sentence:

* a has the generic identifier “authorname”.
Property rule:
e If a has the generic identifier “authorname” then a is a
name-of-an-author.

Resulting propagation sentence:

page 4 Extreme Markup Languages 2002

http://www.renderx.com

mapping rules

application sentences

Drawing inferences on the basis of markup

* ais a name-of-an-author.

In more complicated cases the generation of all implied propagation
sentences also requires applying the inheritance conditions indicated by
the property rule:

Image sentence:

* a has the value “de” for a lang attribute.

Image sentence:

* ais the immediate parent of b.

We note in passing that b does not have an attribute-value specification
for the lang attribute, and there is thus no image sentence giving that
attribute any value for b.

Property rule:

 If x has the value “de” for a lang attribute, then: x is in the
German language, and any descendent y of x is in the German
language unless there exists some element z which is both a
descendent of x and either an ancestor of y or identical to y and
z has a lang attribute with a value other than “de”.

Resulting propagation sentences:

* ais in the German language; b is in the German language.

One may reasonably wonder whether the variables in the antecedent and
consequent of property rules really should be ranging over the same set
of objects, with the result that one and the same thing both, e.g., has a
lang attribute and is in German. Currently we believe that this is a
reasonable assumption and one which simplifies our system — allowing
the hierarchical relations to continue to apply with being mapped to
corresponding higher level relations. However, we are prepared to
reevaluate this assumption as we accumulate more practical experience
translating documents and calculating licensed inferences.

These rules associate objects and properties in the propagation sentences
with objects and properties in the application domain. Like the property
rules, mapping rules express generalizations rather than specific claims

about document instances.

Examples of mapping rules:

e Ifxisan article and y is a name-of-an-author and x is the parent
of y, and z is denoted by y, then z authored x.

» If x is a meeting-name and y is an attendee-name, and w is
denoted by x and z is denoted by y, then y attended x.

Note that in some cases the consequent of a mapping rule attributes a
property to a document component, but in other cases no property is being
attributed to the document component (at least directly), but only to the
object that the component denotes.

These sentences are typically (but not necessarily) about objects and
properties external to the document, such as authors, customers, prices.

Extreme Markup Languages 2002

page 5

http://www.renderx.com

Drawing inferences on the basis of markup

They result from applying a mapping rule to one or more propagation
sentences.

Examples of application sentences are:

* a is the author of (the article) b.
* cis ameeting.

e g attended c.

fundamental axioms Axioms of the sort common to systems supporting commonsense
reasoning. Examples:

* If x occurs before y, then y does not occur before x.

* If x occurs at the same time as y then y occurs at the same time
as x.

e If xis apart of y and y is a part of z, then x is a part of z.

* if p is necessary and (if p then g) is necessary, then g is
necessary.

Further discussion of the fundamental axioms is outside the scope of this
paper.

world knowledge These are sentences about the world or some part of it. They may be
particular fundamental facts (water is a material substance, five is a
number) particular contingent facts (the United States signed the Berne
treaty), or they may be rules — in practical systems, business rules will
be of particular importance here. Strictly speaking, these sentences, like
the fundamental axioms, are also outside the scope of this paper, but they
are a necessary part of the target system: without them, it is unlikely that
many useful applications will be built.?

Some applications may not need to have all of these kinds of sentences present in the logical system.
In some cases, the main value will lie in the application sentences and the theorems which will follow
from combining them with the fundamental axioms and world knowledge. The image and propagation
sentences will be present only in order to help in generating all the appropriate application sentences.
In some cases, the image sentences will serve no purpose at all except the generation of the propagation
sentences.

2.4 Two approaches: inference and direct instantiation

2.4.1 Inference-driven approach

We are exploring two approaches to the task of generating useful sets of inferences. The
inference-driven approach, illustrated in figurel, uses all the different kinds of sentences outlined
above. We will represent the description of the markup vocabulary and input document directly in
the reasoning system (in the form of property rules, mapping rules, and image sentences) and use
normal inference techniques to generate all the other sets of sentences. As shown in the figure, image
sentences are derived from an XML document instance; property rules and mapping rules are derived
from a formal tag set definition. From the image sentences and the property rules, an inference
process derives the propagation sentences. From the propagation sentences and the mapping rules,
an inference process derives the application sentences. From the application sentences, fundamental
axioms, and world knowledge, an inference process derives further sentences.

2.4.2 Direct-instantiation approach

In the other approach, application sentences are generated directly by instantiating (filling in the
blanks in) the sentence schemata or skeleton sentences described in the framework proposal of
[Sperberg-McQueen et al. 2001a]. A system overview is given in figure 2. In this approach, XSLT

page 6 Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

XML document instance Formal tag set definition (FTSD)

&

._Q._

r

Image sentences Property rule

INFERENCE

_@

k4

Propagation sentences | Mapping rules

=4 INFERENCE

-

Application sentences Fundamental axioms World knowledge

INFEREMCE g

_O__

Further sentences

Figure 1 Data flow in the inference-driven approach

transformations are used to map directly from the XML document instance into application sentences.*
The XSLT stylesheets are specific to particular document types, and they directly embody the property
and mapping rules for that document type. This is not, however, the most compact or intuitive form
in which to represent the property and mapping rules; in order to make the mapping and property
rules accessible for human inspection and for reuse, however, they are formulated in declarative
form in the formal tag set definition, and a second-level transformation is applied to generate the
appropriate first-level transformation sheets which take a document instance as input and produce
application sentences as output.

If it is desirable for auditing or other purposes, an instantiation-based system can also be used to
generate image sentences, propagation sentences, and explicit property and mapping rules. An
augmented data flow for such a system is shown in figure 3.

Extreme Markup Languages 2002 page 7

http://www.renderx.com

Drawing inferences on the basis of markup

XML document instance ﬁormal tag set cl_efinitinn (FTSD)
| Generic ftsdtoxs.xs|
XSL
| DTD-specific transform
(LD
v
IApplication sentences | Fundamental axioms World knowledge
INFERENCE [
Further sentences?
Figure 2 Data flow in the direct-instantiation approach
XML document instance ﬁormal tag set definition (FTSD)
Generic xmitopro.xsl EGeneric ftsdtoxsl.xsl

| Property axioms

| DTD-specific transform

| Mapping axioms

XS@.

l Image sentences Propagation sentences

v

lApplication sentences | Fundamental axioms World knowledge

INFERENCE

Further sentences?

Figure 3 Data flow in the direct-instantiation approach, augmented

page 8 Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

§ 3 Document representation

The image sentences described above provide a representation of the input document with sufficient
detail to enable the original document to be recreated — or, more precisely, a document sufficiently
similar to the original to have the same basic information set [Cowan/Tobin 2001]).

In this section, we describe our Prolog representation of image sentences. In earlier work
[Sperberg-McQueen et al. 2001a], we described a different Prolog representation, but it is inefficient
and exposes somewhat more of the internal implementation data structures than is desirable. The
representation outlined here is based on several simple principles:

* The lower level implementation choices are encapsulated as thoroughly as possible.
References to data structures are hidden behind Prolog variables, thus insulating the higher
level predicates from changes we may later make at the lower levels.

* Identifiable entities, such as nodes, documents, or paragraphs are treated as objects with
identities. They are referenced by unique identifiers, rather than by address or location.

e The W3C Document Object Model (DOM) includes methods for node navigation and
attribute retrieval that can simplify our definitions. We emulate these methods in Prolog,
though ours is not a full DOM implementation.

Less crucial from some points of view, but worth mentioning, is the fact that the Prolog implementation
we use (SWI Prolog) provides an SGML/XML parser, which we call and whose results we use to
create our representation. To allow portability to other Prolog implementations, none of the
parser-specific predicates are essential to the basic system architecture, nor are they intimately coupled
with the portable code. All functions performed by the parser could be handled by XSLT
transformations that would write the image predicates as output. We have also defined XML
serialization routines which operate on the predicates described below, so that the reasoning system
can read and write XML directly.

We store facts about the XML tree in image sentences using predicates like the following:

node (nodeé6) .

gi(node6, quote).

parent (node6, node4).

first child(node6, node7).

nsib(node6, nodell).

attv(node6, lang, de).

content(node9, 'Die Welt ist alles, was der Fall ist.').

These might be paraphrased roughly as follows:

* node(node6). The object called node6 is a node in the tree.

* gi(node6, quote). The generic identifier (sometimes called the element type) of node6 is
quote.

* parent(node6, node4). The parent of node6 is node4.

¢ first_child(node6, node7). The first child of node6 is node7.

* nsib(node6, nodel0). The following sibling of node6 is nodel0.

* attv(node6, lang, de). node6 has an attribute called lang, which has the value de.

* content(node9, 'Die Welt ist alles, was der Fall ist.'). The content of node9 is the string
“Die Welt ist alles, was der Fall ist.”

The identifiers for nodes are generated automatically and carry no significance. The first few nodes
of the purchase order example might look something like this:

Extreme Markup Languages 2002 page 9

http://www.renderx.com

Drawing inferences on the basis of markup

node(nodel).
gi(nodel,purchaseOrder).
first child(nodel, node2).

attv(nodel, orderDate, '1999-10-20').
node (node2).

gi(node2,shipTo) .

parent (node2, nodel).

first child(node2, node3).
nsib(node2, nodell).

attv(node2, country, 'US').
node (node3) .
gi(node3,name).

parent (node3, node2).
nsib(node3, node5).

content (node4, 'Alice Smith').
parent (node4, node3).

node (node5) .
gi(node5,street).

parent (node5, node2).
nsib(node5, node7).

content (node6, '123 Maple Street').
parent (node6, node5).

node (node7).

gi(node7,city).

parent (node7, node2).

nsib(node7, node9).

content (node8, 'Mill Valley').
parent (node8, node7).

node (node9) .

gi(node9,state).

parent (node9, node2).
nsib(node9, nodell).

From Prolog atoms of this kind, it is possible to derive other convenient predicates, such as:

children(node6, [node7, node81]).
attl(nodell, [purpose='title', lang='la']).
psib(nodel0, node6).

child(node4, node6).

ancestor (node6, nodel).

nearest anc(node6, p, noded).
nearest_anc(node9, lang, 'de', nodeé6).

These might be paraphrased as follows:

¢ children(node6, [node7, node8]). The object called node6 has as children node7 and node8
in that order.

* attl(nodell, [purpose='title', lang='la']). Node nodel] has attribute-value specifications
for attributes purpose and title, with the values title and la respectively.

* psib(nodel0, node6). The previous sibling of nodel0 is node6.
* child(node4, node6). node6 is a child of node4. This is the inverse of the parent relation.
¢ ancestor(node6, nodel). nodel is an ancestor of node6.

* nearest_anc(node6, p,noded). The nearest ancestor of node6 which has the generic identifier
p is node4.

e nearest_anc(node9, lang, 'de', node6). The nearest ancestor of node9 which has the value
de for the attribute lang is node6.

page 10

Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

§ 4 Propagation sentences

The sample purchase order has no attributes with inherited values, or with complex rules for calculating
default values; the propagation-sentence layer of our system, which is intended to handle such cases,
therefore has nothing much to do and can be passed over without comment.

§ 5 Application sentences and further inferences
Expressed in English, the markup of the example purchase order allows us to infer propositions in
the application domain like the following:

* There exists an object (in this case an abstract object) of the type purchase order (which
for convenience we will refer to by the name P-123).
* Purchase order P-123 was placed on 20 October 1999.

* There is someone named Alice Smith now able to receive mail at 123 Maple Street, Mill
Valley, California. (For brevity's sake, we will refer to her as S-45 and to her address as
A-45)

¢ There is someone named Robert Smith now able to receive mail at 8 Oak Avenue, Old
Town, Pennsylvania. (For brevity we will refer to him as S-46 and regard him as a customer.)

* The items on P-123 should be shipped to person S-45 at address A-45.

* Customer S-46 is to be billed for the items on purchase order P-123 at the prices indicated.
* Purchase order P-123 includes one (1) item of part number 872-AA.

* The item denoted by part number 8§72-AA is a lawnmower.

o Customer S-46 is to be billed $148.95 for the item denoted by part number 872-AA.

* Purchase order P-1/23 includes one (1) item with part number 926-AA.

* The item denoted by part number 926-AA is a baby monitor.

* Etc.

In the typology given above, these propositions would all be expressed by application sentences.

We express application sentences in Prolog using a simple object-oriented language which defines
objects and classes of objects, properties of objects and their values, and relations among objects,
using the following predicates:

* object(O): O has been instantiated as an object.

* obj_class(0,C): Object O is of class C.

* models(O,L): The real-world object modeled by O is represented at the syntax level by the
XML elements which are the pre-images of the nodes in L.

* class(C): C'is a class of objects.

* subclass(Sub,Super): Class Sub is a subclass of class Super. Subclasses can take the same
properties and participate in the same relations as their Superclasses.

¢ property_of(C,P,T): Objects of class C have property P, which is of type T.
* opv(O,P,V) Object O has value V on property P.
* relation(R,L) Relation R can hold among objects of classes listed in ordered list L.

* relation_applies(R,L) Relation R applies to the objects in the ordered list L.

Expressed in Prolog using these predicates, the application sentences listed above would take
something like the form outlined below.

Extreme Markup Languages 2002 page 11

http://www.renderx.com

Drawing inferences on the basis of markup

The vocabulary makes use of the following classes, properties, and relations; we assume here the
simple types of XML Schema, but the specifics of the simple type system are not relevant to our
argument.’ The purchase order has a date property, and relations with ship-to and bill-to addresses,
comments, and items.

class(purchase_order).

property of (purchase order,date, 'xsd:date').
relation(shipto, [purchase_ order,address]).
relation(billto, [purchase order,address]).
relation(has_comment, [purchase order,comment]).
relation(has_item, [purchase order,item]).

The actual purchase order in hand allows us to infer the existence of an instance of class
purchase_order; we can assert its existence by giving it an arbitrary identifier and stating the values
of its properties, and asserting its occurrence in members of various relations:

object(pl23).

obj class(pl23,purchase order).
models(pl23,[nodel]).

opv(pl23,date, '1999-10-20").

relation applies(shipto,[pl23,a45]).
relation applies(billto,[pl23,a46]).
relation applies(has_comment, [p123,c926]).
relation applies(has_item,[pl23,pl123 i01]).
relation applies(has_item,[pl23,pl23 i02]).

We call out persons as a special class, because (let us say) we know that they are important for the
application area; a more purely mechanical translation from the schema might not define a separate
class for persons.

class(person).
property of (person,name, 'xsd:string').

The two addresses each allow us to infer (for application purposes, at least) the existence of a person
at that address:

object(s45).

object(s46).

obj class(s45,person).

obj class(s46,person).
opv(s45,name, "Alice Smith").
opv(s46,name, "Robert Smith").

Addresses have a number of simple properties, mostly string-valued. To illustrate the subclass
predicates in our system, we have followed the XML Schema primer's international purchase order
example in defining separate types for US and UK addresses. Because we have defined person as a
separate class of objects, we need to use relation, not property_of, to describe the link between
address elements and their first child (the name element).

class(address).

class(us_address).

class(uk_address).

subclass (us_address,address) .

subclass (uk_address,address).
relation(is_at_ address, [address,person]).
property of(address,street, 'xsd:string').
property of(address,city, 'xsd:string').
property of (us_address,state, 'xsd:string').
property of(us_address,zip, 'xsd:string').

page 12 Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

property of (uk_address,postcode, 'xsd:string').
property of(uk_address,exportcode, 'xsd:positivelnteger').

The two addresses in our sample offer no particular difficulties:

object (a45).

obj class(a45,us_address).
opv(a45,street,"123 Maple Street").
opv(a45,city,"Mill valley").
opv(a45,state, "CA").

opv(a45,zip,90952).

relation applies(is_at_address,s45,a45).
relation applies(is_at address,s46,a46).

Items on the purchase order have product name and part number, price, and ship date.

class(item).

property of(item,productname, 'xsd:string').
property of(item,quantity, 'xsd:positivelInteger').
property of(item,us price, 'xsd:decimal').
relation(has_comment, [item,comment]).

property of(item,shipdate, 'xsd:date').

property of(item,partnum, 'xsd:string').

The simple structure of the example makes it easier to fill in the required information:

object(pl123 i01).

obj class(pl23_i0l,item).
opv(pl23_i01,productname, "Lawnmower") .
opv(pl23 i0l,quantity,1).

opv(pl23_i0l,us price,148.95).

relation applies(has_comment, [p123_i01,c926]).
opv(pl23_i0l,partnum, "872-AA").

Both purchase orders and items can have arbitrary numbers of comments; to model this one-to-many

relation, we make comments a class of objects by themselves.®

class(comment) .
property of (comment,contents, 'xsd:string').

The two comment elements in the document are represented straightforwardly:

object(c926).

obj class(c926,comment).

models(c926,[node39]).

opv(c926,contents, "Hurry, my lawn is going wild.").

object(c927).

obj class(c927,comment).

models(c927, [node55]) .

opv(c926,contents, "Confirm this is electric").

Several observations may be worth making. First, some of these inferences are redundant and provide
no new information. No e-commerce site will rely on incoming purchase orders for the knowledge
that part 872-AA is a lawn mower or that one of its prices is $148.95. But the redundancy is intentional
and may be useful: if the internal system catalog shows 872-AA as a power drill, there is a
contradiction which should be resolved before the purchase order is fulfilled. Similarly, most
production systems should know from the data provided by the U.S. Postal Service that the zip code

Extreme Markup Languages 2002

page 13

http://www.renderx.com

Drawing inferences on the basis of markup

given in the ship-to address is not valid for Pennsylvania. One step in resolving the problem is to
notice the contradiction; the redundant information can help make that happen.

Some other inferences are also possible, if we apply some knowledge of the real world; in our system
as currently structured, these are not application sentences but appear in the data flow diagrams as
“Further sentences”.

* There is a street in Mill Valley called Maple Street.
The Maple Street in Mill Valley has a house 123 on it.

And so on. Lots of inferences might be drawn from the addresses alone, but we will ignore
most of them here.

* (Depending on how the purchase order was generated, we may be more or less likely to
infer:) The item denoted by part number 872-AA was quoted to customer S-46 as having
a price of $148.95.

* Because purchase orders are supposed to be placed only in good faith, we might infer that
customer S-46 is willing to pay for the items on purchase order P-123 at the prices indicated.

* Because purchase orders are sometimes filed by the person who will receive the goods, it
is possible that the act of placing this order was performed by Alice Smith.

Because purchase orders are sometimes filed by the person who will pay for the goods,
e.g., because they are giving someone a gift, it is possible that it is Robert Smith who placed
the order.

* From the comment “Hurry, my lawn is going wild!” a human or a computer system with
a good grasp of English syntax and pragmatics, may well infer that it was Alice Smith, not
Robert Smith, who placed the order. This may be an important inference, but since it relies
on our understanding of English, rather than on our understanding of the purchase-order
markup, it is beyond the scope of systems like those we describe in this paper.

* Because there is no point in shipping goods to people who cannot use them, and since
people can use goods only if the people are alive, we may infer that Alice Smith was alive
when this order was placed.’

* A similar argument may lead us to infer that Robert Smith was probably alive when the
order was placed.

There are some inferences we may be tempted to draw, and which may in fact be true in the common
case, which are probably not, strictly speaking, licensed by the purchase order or its markup. We
mark these tempting but not necessarily valid inferences with a star.

* Person S-45 is desirous of receiving items 872-AA and 926-AA.
* Person S-46 has expressed a willingness to pay for the items on purchase order P-123.

The first inference, though not strictly justified by the markup, may be true often enough that we
may use S-45's address for mailings about lawn-care products.

The second inference, although it goes beyond the meaning of the markup as documented by its
creator, may nonetheless be licensed by the knowledge at our disposal. If our business rules require
some indication of willingness to pay the bill whenever the ship-to and bill-to addresses are not the
same, then we may indeed be able to draw this inference — if customer S-46 had not expressed a
willingness to pay, then the purchase order would not exist in this form at this point in the processing
path. That is, the inferences we can draw from the markup itself may interact with general rules
already present in our logical system (the world knowledge mentioned above) and generate further
inferences. Such inferences are beyond the scope of the system we are describing, though clearly

page 14

Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

for some purposes the prospect of drawing such further inferences will be the main reason for wishing
to generate application sentences in a logical notation.

§ 6 Skeleton sentences and mapping rules
One immediate problem we face is the development of a notation (specifically, an SGML/XML
DTD) for expressing what [Sperberg-McQueen et al. 2001a] call “sentence skeletons”, or “skeleton
sentences”. These are sentences, or rather fragments of sentences, either in English or some other
natural language or in some formal notation, for expressing the meaning of constructs in a markup
language. They are called skeleton sentences, rather than full sentences, because they have blanks
at various key locations; a system for automatic interpretation of marked up documents will generate
actual sentences by filling in the blanks in the skeleton sentences with appropriate values from the
documents themselves.

Some of the skeleton sentences for our sample inferences in English might look like this, if we used
parenthetical expressions to show how the blanks are to be filled in:

¢ Purchase order (p-o. ID) was placed on (date).

¢ There is someone named (name) now able to receive mail at (address).

e There is a street in (city) called (street).

* The items on (p-0.1ID) should be shipped to person (ship-to-name) at address
A-45.

e Customer (bill-to-name) is willing to pay for the items on purchase order
(p-o.ID) at the prices indicated.

* Purchase order (p-o.ID) includes (quantity) item of part number (part
number).

* The item denoted by part number (part number) is a (productName).

e Customer (bill-to-name) is willing to pay (price) for the item denoted by part
number (part number).

e The item denoted by part number (part number) was quoted to customer
(bill-to-ID) as having a price of (price).

The skeleton sentences for our Prolog facts would look like this, if we use comments and XPath
expressions to say how to fill in the blanks. First, the purchase order; the XPath expressions are to
be interpreted as if the purchaseOrder element were the current node:

object (X), /* X is an arbitrary ID */
obj class(X,purchase order),

models(X,Y), /* Y is generate-id(.) */

opv(X,date,Z). /* Z is string(./@date) */

Next, the person and address items; here, the shipTo or biliTo element provides the current node for
the XPath expressions:

object(P),

object(A),

obj class(P,person),
obj class(A,address),

opv (P, name,N), /* N is string(./name) */
relation applies(is_at_ address,P,A),

opv(A,street,S), /* S is string(./street) */
opv(A,city,C), /* C is string(./city) */
opv(A,state,T), /* T is string(./state) */
Oopv(A,zip,Z). /* Z is number(./zip) */

Extreme Markup Languages 2002 page 15

http://www.renderx.com

Drawing inferences on the basis of markup

Note that if the current node has country="US", then we should not assert obj_class(A ,address),
but instead obj_class(A usaddress), and similarly for country="UK" and obj_class(A ,ukaddress).
Similar skeleton sentences can be constructed along similar lines.

In existing markup systems, as in the imaginary vocabulary being used in the purchase order example,
the appropriate values for variables are often to be taken from whatever occurs in the document at

a specific location. In the TEI DTD, for example, the current page number for the default pagination
is given by the value of the ‘n’ attribute on the most recent ‘pb’ element, while the identifier for the
language of any natural-language material is given by the value of the ‘lang’ attribute on the smallest
enclosing element which actually has a value for the ‘lang’ attribute; the language itself is described
by whatever ‘language’ element in the TEI header has that identifier as the value of its ‘id” attribute.

In the skeleton sentence, we need to label each blank with some expression which describes
unambiguously how to derive the appropriate value to be used in the sentences constructed from this
skeleton. The parenthetical notes and comments used in the examples above illustrate the point; in
real systems we need a more formal way to provide the information. Since these expressions typically
“point” to other nearby markup structures, we refer to them as “deictic expressions”; they express
notions like “the contents of this element” or “the value of the ‘lang’ attribute on the nearest ancestor
which has such a value” or “the value of the ‘fype’ attribute on the nearest ancestor of type ‘div’”.

Several theoretical and practical problems arise in using skeleton sentences to say what the markup
in some commonly used DTDs actually means, in a way that allows software to generate the correct
inferences from the markup and to exploit the information.

First, what formalism should be used to write the skeleton sentences? We can easily adopt some
existing formalism, e.g., that of Prolog or whatever inference engine we choose to use; can we devise
a formalism that will not commit us to a particular inference engine?

There appears to be a significant difference among (a) skeleton sentences which serve to formulate
in some formal notation the specific facts expressed by the markup in the document (the mapping
rules described above), (b) sentences or skeleton sentences which express invariant rules about
specific properties captured by the markup, e.g., “The value of the ‘lang’ attribute is inherited; the
value of the ‘n’ attribute is not inherited” (the property rules) and (c) sentences or skeleton sentences
which express invariant rules about textual and other constructs, e.g., “The author of a letter is
physically located at the place given in the place-date line, on the date given in the place-date line,
unless the letter is falsified or forged in some way” (which were described above as world knowledge).
Sentences in group (b) serve to capture useful generalizations about the way markup constructs in a
given DTD behave; sentences in group (c) are important for certain kinds of inferences, but appear
to have relatively little to do with the markup itself. What is the best way to reflect these differences
in function among the sentences and skeleton sentences of a markup system?

One experimental syntax for skeleton sentences uses Prolog notation for the structure of the sentences,
a small XML vocabulary for the framework and for filling the blanks, and XPath as the language
for the deictic expressions. Some of the skeleton sentences above would look like this in this syntax:

<var name="A" val="concat('o-',6generate-id(.))"/>

<var name="P" val="concat('o-',6generate-id(./name))"/>
<rule>object(<val var="P"/>).</rule>

<rule>object(<val var="A"/>).</rule>

<rule>obj class(<val var="A"/>,address).</rule>
<rule>obj class(<val var="P"/>,person).</rule>
<rule>relation applies(is_at address,

[<val var="A"/>,<val var="P"/>]).</rule>
<rule>opv(<val var="P"/>, name, <de xv="string(./name)"/>).</rule>
<rule>opv(<val var="A"/>, street,<de xv="string(./street)"/>).</rule>
<rule>opv(<val var="A"/>, city, <de xv="string(./city)"/>).</rule>

page 16

Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

Each skeleton sentence is tagged as a rule element, the contents of which follow Prolog notation.
Deictic expressions within the rule are marked by de elements, which carry an attribute whose value
is an XPath expression. Frequently used expressions can be assigned to variables, for compactness
and clarity. When the skeleton sentences are applied to the document instance in order to produce
sentences in the notation of the logical system, a current element is selected and the XPath expressions
are evaluated in that context. Their values are written out as part of a concrete sentence which has
the same overall form as the skeleton sentence, but has no blanks.

The experimental syntax allows the creator of the skeleton sentences to specify the node from whose
context the XPath expressions should be evaluated, by embedding the skeleton sentences within
larger structures, which themselves identify element types by means of XSLT match patterns. A
larger fragment of the documentation for the fictional purchase order language looks like the following
example; the rules defined do not generate the Prolog shown above but a different set of Prolog
application sentences. Each set of rules is embedded in an elemtype element which describes the
element type to which they apply.

<elemtype match="purchaseOrder">
<doc>
<para>This XML element represents a purchase order.</para>
</doc>
<rule distributed="false" lang="Prolog">
purchase-order (<de xv="generate-id(.)"/>).
</rule>
<rule distributed="false" lang="Prolog">
dated(<de xv="generate-id(.)"/>, <de xv="QorderDate"/>).
</rule>
</elemtype>

<elemtype match="shipTo">

<doc>

<para>The person and address to whom to ship.</para>
</doc>

<rule distributed="false" lang="Prolog">

person(<de xv="generate-id(.)"/>, <de xv="name"/>).
</rule>

<rule distributed="false" lang="Prolog">

address (a-<de xv="generate-id(.)"/>,

<de xv="street"/>,

<de xv="city"/>,

<de xv="state"/>,

<de xv="zip"/>).

</rule>

<rule distributed="false" lang="Prolog">

person-address (<de xv="generate-id(.)"/>,

a-<de xv="generate-id(.)"/>).
</rule>
<rule distributed="false" lang="Prolog">
ship-to(<de xv="generate-id(..)"/>,

<de xv="generate-id(.)"/>,

a-<de xv="generate-id(.)"/>).

</rule>
</elemtype>

§ 7 Some challenges
In our attempts to formulate skeleton sentences for existing real-world vocabularies like HTML,
TEI, and Docbook, some questions have arisen which have proven difficult to answer.

In skeleton sentences like “[this element] is in English”, what do the deictic expressions like “this
element” actually refer to? In some cases the inferences appear to relate to the linguistic components
of the text itself (“This document is written in English”), and in some cases to the text's formal
properties (“Augustine's Confessions is divided into 13 books”). In some cases, the markup appears
to license inferences about some object or entity in the real world (“Henry Laurens was in Charleston

Extreme Markup Languages 2002 page 17

http://www.renderx.com

Drawing inferences on the basis of markup

on 18 August 1775”), but sometimes the entities referred to are not at all in the real world (“Harry

Potter missed the Hogwarts Express on 1 September”). In still other cases, the inferences appear to
apply to the electronic encoding of the text itself (“This metadata was last revised on 20 July 1998”)
or to some other witness to the same text (“The recipient's copy of this letter is preserved in [some

particular archival collection, with some particular call number]”). Attempting to disentangle these
lands the would-be formulator of skeleton sentences promptly in a thicket of ontological questions
which have not yet received adequate attention.

The ontological questions become even more thorny in connection with markup systems like that of
the Text Encoding Initiative, which are intended for use by a wide variety of projects which are
expected to have widely different views about the ontological commitments to be associated with
the TEI markup. Do statements about Augustine's Confessions, for example, relate to some abstract
text distinct from each physical copy of the text, or is the phrase “Augustine's Confessions” merely
a convenient shorthand for “all the physical documents which witness Augustine's Confessions”? It
would appear essential to decide this question in order to formulate skeleton sentences for markup
languages like the TEI, but the TEI itself is intentionally coy about the issue, in order to ensure that
textual Platonists and textual constructivists can both use TEI markup. It is a challenge to build a
similar ambiguity or vagueness into the set of skeleton sentences which document the prescribed
interpretation of TEI markup.

Notes

1. In this we follow a proposal made by Turski and Maibaum in their discussion of
programming-language semantics [Turski/Maibaum 1987]; they put the proposal thus (p.
4):

“Two points deserve special attention: we expect programs to be capable of expressing a
meaning and we want to be able to compare meanings. Unless we are very careful, we may
very soon be forced to consider an endless chain of questions: what is the meaning of ...?
what is the meaning of the meaning of ...? etc. Without going into a philosophical discussion
of issues certainly transgressing any reasonable interpretation of the title of this book, we
shall accept that the meaning of A is the set of sentences S true because of A. The set S may
also be called the set of consequences of A. Calling sentences of S consequences of A
underscores the fact that there is an underlying logic which allows one to deduce that a
sentence is a consequence of A.

“Usually the A itself is a set of sentences, thus we are saying in fact that the meaning of a
set of sentences is the set of consequences that are deducible from it.”

2. The term deictic expression comes from traditional grammar, where it is used to denote
pointing expressions like “this one over here” or “that one over there” — from the Greek
word deixis, for pointing.

3. The history of work in artificial intelligence includes many examples of knowledge bases
which capture the kind of information we believe will go here, and attempt to show how
to build useful applications using it. Recent relevant work includes [Fikes/McGuinness
2001].

4. Obviously, XQuery functions can also be used.

5. The simple types assigned are more or less those assigned in the XML Schema primer; we
have not attempted to model the USState type here, which is a restriction of xsd:string with
an enumerated set of values. We have retained the type xsd:positivelnteger for zipcode;
we are strongly tempted to change it to xsd:string for the sake of verisimilitude, because

page 18 Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

leading zeroes are not omissible in zip codes, but we have decided to follow the schema
primer here.

6. We could allow many-valued properties, but prefer a more strictly relational approach.

7. Actually, if the order was placed by Robert Smith, it is not entirely safe to infer that Alice
Smith was alive; it is plausible, however, that Robert Smith thought she was alive. Unless,
of course, we are reasoning about events in a detective story, in which case it may only be
the case that Robert Smith wished to give the impression that he thought Alice Smith was
alive.

Bibliography

[ACH/ACL/ALLC 1994] Association for Computers and the Humanities, Association for
Computational Linguistics, and Association for Literary and Linguistic Computing. 1994.
Guidelines for Electronic Text Encoding and Interchange (TEI P3). Ed. C. M. Sperberg-McQueen
and Lou Burnard. Chicago, Oxford: Text Encoding Initiative, 1994.

[Coombs et al. 1987] Coombs, J. H., Renear, A. H., and DeRose, S. J. 1987. Markup systems and
the future of scholarly text processing. Communications of the Association for Computing
Machinery 30, 11 (1987),933-947.

[Cowan/Tobin 2001] Cowan, John, and Richard Tobin, ed. 2001. “XML Information Set.” W3C
Recommendation 24 October 2001. [Cambridge, Sophia-Antipolis, Tokyo]: World Wide Web
Consortium. http://www.w3.org/TR/xml-infoset/

[Fallside 2001] Fallside, David C.2001. XML Schema Part O: Primer. W3C Recommendation, 2
May 2001. [Cambridge, Sophia-Antipolis, Tokyo]: World Wide Web Consortium.
http://www.w3.org/TR/xmlschema-0/

[Fikes/McGuinness 2001] Fikes, Richard, and Deborah L. McGuinness. 2001. “An Axiomatic
Semantics for RDF, RDF-S, and DAML+OIL (March 2001).” W3C Note 18 December 2001.
[Cambridge, Sophia-Antipolis, Tokyo]: World Wide Web Consortium.
http://www .w3.org/TR/daml+oil-axioms

[Guttag/Horning 1993] Guttag, John V., and James J. Horning, with S. J. Garland et al. 1993.
Larch: languages and tools for formal specification. New York: Springer-Verlag. Texts and
monographs in computer science 981.

[Hughes/Cresswell 1968] Hughes, G.E.,and M. J. Cresswell. 1968. An introduction to modal logic.
London: Methuen.

[ISO 1986] International Organization for Standardization (ISO). 1986. ISO 8879-1986 (E).
Information processing — Text and Office Systems — Standard Generalized Markup Language
(SGML). International Organization for Standardization, Geneva, 1986.

[Ramalho et al. 1999] Ramalho, José Carlos, Jorge Gustavo Rocha, José Jodo Almeida, and Pedro
Henriques. 1999. “SGML documents: Where does quality go?” Markup Languages: Theory &
Practice 1.1 (1999): 75-90.

[Renear 2001] Renear, A.2001. Raising the bar: Text encoding from a logical point of view. CLIP
2001: Computers, Literature, Philology, Gerhard-Mercator University, Duisburg, Germany,
December 2001.

[Rowe 1988] Rowe, N. C. 1988. Artificial Intelligence through Prolog. Prentice Hall, Englewood
Cliffs, NJ.

Extreme Markup Languages 2002 page 19

http://www.renderx.com

Drawing inferences on the basis of markup

[Schatz et al. 1996] Schatz, B., Mischo, W.H., Cole, T. W., Hardin, J. B., Bishop, A. P., and Chen,
H. 1996. Federating diverse collections of scientific literature. Computer 29 (May 1996),28-36.

[Simons 1997] Simons, Gary F. 1997. “Conceptual Modeling versus Visual Modeling: A
Technological Key to Building Consensus.” CHum 30.4: 303-319.

[Simons 1999] Simons, Gary F. 1999. “Using Architectural Forms to Map TEI Data into an
Object-Oriented Database.” CHum 33.1-2: 85-101. Originally delivered in 1997 at the TEI 10
conference in Providence, R 1.

[Sperberg-McQueen 1991] Sperberg-McQueen, C. M. 1991. “Text in the Electronic Age: Textual
Study and Text Encoding, with Examples from Medieval Texts.” Literary and Linguistic
Computing, 6:1, 34-46.

[Sperberg-McQueen et al. 2001a] Sperberg-McQueen, C. M., Claus Huitfeldt, and Allen Renear.
2001. “Meaning and interpretation of markup.” Markup Languages: Theory & Practice 2.3
(2001): 215-234. http://www .w3.org/People/cmsmcq/2000/mim.html

[Sperberg-McQueen et al. 2001b] Sperberg-McQueen, C. M., Claus Huitfeldt, and Allen Renear.
2001. “Practical extraction of meaning from markup.” Paper given at ACH/ALLC 2001, New
York, June 2001. (Slides at
http://www .w3.org/People/cmsmecq/2001/achallc2001/achallc2001 .slides.html)

[Swick/Thompson 1999] Swick, Ralph R., and Henry S. Thompson, ed. 1999. The Cambridge
Communiqué. W3C NOTE 7 October 1999. http://www.w3.org/TR/schema-arch

[Thompson 2001] Thompson, Henry S.2001. “Normal Form Conventions for XML Representations
of Structured Data”. Talk at XML 2001, Orlando, December 2001.
http://www lItg.ed.ac.uk/~ht/normalForms.html

[Turski/Maibaum 1987] Turski, Wladyslaw M., and Thomas S. E. Maibaum. 1987. The specification
of computer programs. Wokingham: Addison-Wesley.

[Vorthmann/Robie 2001] Vorthmann, Scott, and Jonathan Robie. 2001. “Beyond schemas: Schema
adjuncts and the outside world”. Markup Languages: Theory & Practice 2.3: 281-294.

[W3C 2000] W3C (World Wide Web Consortium). 2000. “XHTML 1.0: The Extensible HyperText
Markup Language. A Reformulation of HTML 4 in XML 1.0.” W3C Recommendation 26 January
2000 [Cambridge, Sophia-Antipolis, Tokyo]: W3C. http://www.w3.org/TR/xhtml1/

[Walsh/Muellner 1999] Walsh, N., and Muellner, L. 1999. DocBook: The Definitive Guide. OReilly
and Associates, Inc., Sebastopol, CA.

[Welty/Ide 1997] Welty, Christopher, and Nancy Ide. 1997. “Using the Right Tools: Enhancing
Retrieval from Marked-up Documents.” CHumy 33 (1999): 59-84. Originally delivered in 1997
at the TEI 10 conference in Providence, R .I.

The Authors
C. M. Sperberg-McQueen
World Wide Web Consortium, MIT Laboratory for Computer Science

C. M. Sperberg-McQueen is the Architecture Domain Lead for the World Wide Web Consortium
and a visiting researcher at the University of Bergen.

page 20 Extreme Markup Languages 2002

http://www.renderx.com

Drawing inferences on the basis of markup

David Dubin
University of lllinois at Urbana/Champaign, Graduate School of Library and Information
Science

David Dubin is a research scientist at UIUC's Information Systems Research Laboratory, working
mainly with the Electronic Publishing Research Group. His research interests are in the areas of
information retrieval, text and document processing, and classification. He is a member of the
Association for Computing Machinery, the American Society for Information Science, and the
Classification Society of North America.

Claus Huitfeldt
Avdeling for kultur, sprék og informasjonsteknologi, Bergen University Research Foundation

Claus Huitfeldt is an associate professor of philosophy at the University of Bergen and the director
of the the University of Bergen Research Foundation's department for research in culture, society,
and technology (AKSIS) and of the Humanities Information Technology Research Programme. From
1990 to 1999 he was the director of the Wittgenstein Archives at the University of Bergen, which
created an electronic edition of Wittgenstein's posthumous papers.

Allen Renear
University of lllinois at Urbana/Champaign, Graduate School of Library and Information
Science

Allen Renear is an Associate Professor in the Graduate School of Library and Information Science.
His principal research focus is on how digital documents function as knowledge representation
systems.

As a student at Bowdoin College and Brown University, he specialized in epistemic logic and the
philosophy of science; after several years teaching philosophy, he joined Brown's Computing and
Information Services in 1984, working first as a systems analyst and project leader, and then as a
strategic planner. During this time he consulted on or managed many humanities computing projects
and became involved in a variety of text encoding and computing activities — including X3V1.TG8,
the Text Encoding Initiative (TEI), and the Association for Computers and the Humanities (ACH).
In 1988 Renear helped design the Brown Women Writers Project (WWP), serving at various points
as WWP Co-Director, Acting Director, and Director, and in 1993 he became founding Director of
the Scholarly Technology Group. He is currently the chair of the Open eBook Publication Structure
Working Group.

Extreme Markup Languages 2002
Montréal, Québec, August 6-9, 2002
This paper was formatted from XML source via XSL
Mulberry Technologies, Inc., August 2002

Extreme Markup Languages 2002 page 21

http://www.renderx.com

169

-de 2y, -sepoo jualagip “§-2 ‘suonUIAU0D JuUIRIP Aq pantss ALJea]D aq 515a19]
-ur asorp oy aanbar [sisarajur o1oads o] Sulpiooos 1X9) B aquIOSURL O,

pil

-xaded sy jo 1red puosas o) ut
1ssaud fm 1 gV A T€ aUop J1om a1 0) predar yiim ‘aIe 515a191Ul 35U 1M
*S15219]U1 Y2aIeasal Uel1ad 0] (Jamsue ur) uone[ar ur ajqissod se
Apoawoo se,, :ueaw Ajuo ueo a[qissod se £[}0aL100 5§, "S[IUISIE] B JO UOTIOUTY
ap s1 511 - JewSuo 2ty jo ydeiSojoyd v sonpord o) Juem Jou Op ap "1Xa) I W
s1sa19)ul urepao ajqissod se A[2jRINO0E SB 9AIAS 0] SE 0% 1¥9) I2IjouE 1¥9) [emTuo
i wouy aredaxd o3 1awpe Ing ‘sjeurfuo atp aqqissod se Apoaniod se juasardal o)
10u s1 uondUIOSURT) UT WIE IN() $9PN[IU0D | PUILL U SUOHEIAPISUOD 259} YIIM
‘ *ssa001d uonduos
-uen [eniul 9y Sunmp auop 153q St sesatjuared Jo $asN JUAIIFIIP UIIMIAQ UOTI
-aunSIp 9Y) seataym ‘spremisye pauuoliad Apiseo arow yse) ojduns € 2q pinom
‘aidurexa 10] ‘S9SSE[OPIOM 10J SIPOD JO UORIASUT U], ‘JXa) 91} Ul Pasiatuas a[Iym
ysmIunsip o} ISISEa 51 jeym Aq poUILLIalap OS[E ST AJJRHIUI 2pNjIUl 0] 95001d am
JeY AL "ATESS902U I 19)e] SEUnY) 1510 apnjoul Ued am ey Suimoiny a8e)s L[Iea ue
12 sPUI) Ure1Ia) 9QLIISULI] 0] 9500UD 9M ST, “9SLIE A3 UM PUE SB §1S3Ia1Ul
MoU 9AI3s 07 wAsAs a1y isnfpe pue asiaal o] a[qissod aq pInois 31 1By SUBAW
sty y, AJIIqIsualxa sey j1 et Si wolsAs uonduosuen pood w Jo uls ayj,
**)j5€) Surunsuod awy Ajawanxa ue s1 s§urpus auf atp e
Jo prooas e Juryew ‘autdewr ueo nok sy ‘019 Sa[Npayos awn ‘Fupueuy SB YINs
suonsanb eonoeld M op 0 sey ose urede snyy, 's1saIaiul Jualmo o o) Suojaq
jou s30p 1 ey “ratper ng ‘suostos o] sousiiodun Jo aq jou JgTrus 31 JEY JoU
st Juasaxd je sy Surop jou 10j uoseal Ino !sSuipua aurf [pasul ‘ejdurexa 103
‘PIN0I A\ '9q 03 J0u JYINOo *ISEI[JE JO “[BUI} JOU IIE SUOISIIIP INO ‘05 UaAg
"0AJDS 2M §]SAIIIUL 2SOUM JO BOPI INO
0] IaMSUE Ul 318 953L] PUE ‘UIBJU0d pInoys uonduosuen B 1Bl INOqe SUoISIoap
UIELIDD IPEW 9ABY 9AN “JOU JEYM PUE ST JOJ JUBAS[RI 51 JBYM ‘PApIOap AL am ‘sl
10E] 91 ‘I2A9MOE] “S21mEa) yons ySMIUNSIp 01 33UBAI[RL0U JO s1 I :Avs ySnu
noA Inq ‘arqissod aq pnom STyl [TV "1X9) 913 JO SIUILWA[2 [BonEWLRIS Ma] B A[UO
jussaidar om pue ‘aulf € jo sSUIpuI oI PI0OAI JOU OP IM I, 2} I9A0 JOP P JO
uonisod a1 30 °s,J, PATIUOD PUE XIAUOD SE Yons SUPLIMPURY JO SAIMEI] UIAM)
-aq ysmBupsip ajdurexa 10J jou Op aM gV M I8 3om uonduosuen Ino uf
‘jo1dap 03
Surod are am yomm pue Apuapuadapur sis1xa yomm 9xal B £q jou pue ‘(515213

uoypjaidiajug pup sixa [‘suonditosunlf

069

-ut * eo18ojoydess ‘eorfojopryd ‘[eoneuruesd ‘reomydosoqiyd) sjsaraym yoreas
-21 Mo Aq peuruuaiap st ‘moy pue uasaxdar 0] Juiod A[jenjoe are am jeym puy
-uonsanb snp 01 Jamsue a1 uo puadap [[Im ,I0aLI0D, SIIeUM gsisidojoydesd
10 suenemnueIn) ;s1aydosoliyd jsuondUosuen INo P14 JAIas 0] JUBM aM Op
UIoUA :I0q ‘uonEiussaidat sy e ynoge jou st uonsanb renuasss oyl up |
JWMIpau yorgm u juasaidar o, juesul juasa.dal 0], S0P 1BYM PUY [S5au
-172.4403 JO UOLI3)LLD alf) S JEUAN jUeawl , ajqissod so A[0ariod se, S90p 1By
= :suonsanb suros yse
ST J9] 210Ja1a1) ‘UOHEILJLIR[D B SPaau Sy, °,d[qissod st Ajoan02 se siduosnur
reuSuo oy juasaidar 03, sE pauyep useq ujo sey uondLIsuRn JO WIE ayJ,

T
ond
-x2 11 9yeW o) pue ‘vonwjardiojur azieuno} o) st uondo ATuo nQ ‘uonwsidiy
-1 JO J[nsal B osuas Juons B uT ST UIAISUaSNIA Jo uonipa Auy -Funoaidmur pue
funoa[as Jauel - [Erauad Ul YIom [BLIONPa-1xa sk - 1nq ‘Suiddod jou 51 Juiquns
-uery, surod [eiauag Jurmof[o} sy sjensn[[l 03 aa1as Iaded Kw jo syred qog
oM ST U] §910uRIsIsuoour pue swapqord proae pue Ajradord yrom
uonduasuen puejsiopun 03 J9pio ul paysmIunsip aq 0] PIsU [oIyM ‘SeNIANOE
reuoneiaidisyur JuaIsLip JO SFURI B S2AJOAUL JIom uonduosuen Jey azudooas
1snuI apy ‘uonelaidism pur uonduasuen jo uonsanb oy (v 210U UT IAPIS
-uoa [J AJpuooag *, Jucnduasuen jo e oK) st eym, pue |, juonduosuen s
JeUM,, Suopsanb oy U0 $ND0J AQISITY AI0JAIA] [[IM UOISSNISIP BUIMO[[O) UL,

* ,2[arssod se Apoarrod se siduosnuew rewrduo s jussardal oy, uey)
ssaoord xajdwoa atow yonuI B SI - YA 78 auop s1 11 se uonduosuen tepnonmed
u - uonduasuen ter) andIe pinom T “asamol -ajqissod se Apoanod se [eulduo
ai juasardar o3 st moﬁmtgﬁh 10 wie I 8y pes aq Aew 31 Apjuanbasuo)
"212 “x9] Yusimaop e Jo uonejuasaidar joexa ue - Sunum £q - Supfew Jo §s90
-01d a1 se poojsiapun usyyo 2ue | uonduosuen,, pue , 2qUOSUERI,, SUIIA) ST,

‘[esausd ur jxa3 pue uoneiuasardar 3xa) Inoqe suonsanb saajoAur
UOISSNOSIP STUL, (FV M) Uediag JO ANSILAIU[) alf) 18 SIAIYDIY UTaISUaSnip oy
18 suop s1 3t se ‘vonduasuen papre 1aindwoo :Jurssaooerd suryoeur 0 A[qissande
sseqyoepN sty Sunfew jo 10adse ouo sassnoSIp 31 ‘Iayey °SSE[YORN SIY Inoqe
seads 11 ssop Jou ‘Aydosoqiyd s,uraisuaBuIp yNm [eap jou saop taded sy,

uonejaad.iauy pue s1xa [, ‘suondriosue.y,

I9[Yo1d SIOTY

£69

‘AydeiFopio Jo voneziewou st Surpoous Jo od4A) poy) v (2)
§1Xa]
pauLioj-from Jo sinojuud jo Aypqissod sy J0J mof[e os[e A2y} Ing ‘sjnojuud
anewordip s1einoose 10§ apiacid op Asy) :uondussuen WINEIa)I] PpE U UL SJ0W
yanuw a1oja1al]) are suonduosuen s, vy -suonduasuen auy ur juasard A[yng st
uoneaxdian sJaquosuen jo adA) siy) jey) SUBAL Winjal ul YoM ‘suonduosuen
auy ur pasn 52pod atp Jo jred adre] v oymynsuod L1039je- uonduosuen J1I0BIUAS,,
a1y Ispun [[e) YoM 5apod Jeyl smouys uondussuen s,y M JO Sis&[eue Uy
"WONMNSANS B JILIE IO 1X3] 91 0] UONIPPE UE 51 Jurns Teaur|
- 133Ul UMELI3D B IBI[ayMm IPIOap 0] JAQLISURI) 1) 0 1J3] UI1JO SI 71 “JoAIMO}]
"uonouny
Fuovjdar ou sey pue 1xaJu0d IRALIUAS A1) Jo Med B LU0 UBD g S0uIs ‘SsIU
-pauLIo}-[[am Jo juawainbar o M 191U 10U $30P HJF JO UOISO]OUT A,

SMOD <DIg/19p> HMITI
se - Ajreomdesd Ajamd - paquosuen aq wed yomMm
SMOD B ITI
$® 1Jons 59580 0] 15e0U0D ur
SI SI, *3p02 2maeIuks e “(3xajuod jo wed jou =) , <odu/~fadu>, Aq papoous st it
a10ja131]) Jx%2)u0Dd J1joejuks oy jo Wed B ULIOJ 10U SI0P] PIom Pala]ep oYL
SMOD TI'T <<dI/odu>/|9p>
:Buimorroj i st uopduosuey anorjuks Jo ajdwexa Isouy
HNI [<TEEA/5Ur> |<NV/1ep=>(15qns] 1
:uondpasuern opoejuds pue orydeld ‘yioq ST 590p VAL 1BUM
HNI [THES AV Psqns] T
:(SMOJ[0] S8 pajuas
-audar aq Jydru yoIyMm) UONININSQNS JO UORRAL 3l A[SWIBU ‘Walj} usamiaq uon
~B[3I UTRHAD ' §15985N0s usy) Yalym 9pod uOnMmIESANS B U SJUSIUR[D 91 paguua -
SSAUP2ULINJ-[[am Jo Juawannbar ay) 01 SuIpIosoE - PINOUS am ‘jy pIom pajejop
ay) Juoedar se Jgy pIOM pajlosul ay) mnﬁm._unmn Ire Ajqeqoid am 2oulg
JJuataip 9)inb Bunpowos 0] spea] A[jEonorIUAS JX3] SUIES 3 9pOSUA 03 Ing
HNIJ <THHH/SUT> <AV/12P> 1
1SMOT[OF
Sse 300[JYSiu pue ‘pouasul SE JX3) PALIasUl Ay} pue Palajap SE 1Xa) pajalep ay)
JO Surpoous 3l UBIUI P[NOM JA0QE PAHISUl THH.J PUE DIIS[ap ST Y 2Iaum

uoyvyardiziif pup 51xa [‘Suondiosupif

69

‘aralf pooIsIapun st 1t su ‘| uondusuen,,
40 uopou 9yl 19pUN [[BJ 10U SIAP J[IWSIBY B IUY) VI3 J SYEW pluoys [

NI o AL

Jo uonduosuen oyderd v ‘uon

-dugsuen onoviuds pue ayderd waamiaq 92UAIRIJIp [EIUAWEPUN] B ST IS
(o8ed ap
Jo wirew 1addn Sy ur *8+a) eurl IeInSal IPISING PAIIASUT SE UODIPPE I JXa) atp)
apoaua ‘ased sy ut ‘pue uonduosuen agdesd jo opdiound oy Inoge 198105 Jou
Op am ‘os BUIOP ‘IeA9MO ‘2UIY 91 UT 1%9) PILIASUT SU} APNIILI 0] SABY [[IM 9
‘adurexa 10] “auf ur 13} 311 07 1X2 SPPE YOIUM sour| mindar apIsIno uonIIsuL
Ue JO 2583 3y} uJ '1X2) 9] 9FUBLIBaI 0] JATY UJO IM SSAUPSULIOI-[[am JO JUSH
-a1mbai S JB3W 0} 15PI0 U] *IX8) PaulIo-[jam A[[eonauiuks € seonpoid yomm

Burssaooid 1xa1 10] Smpraoid jo une rernonred ayp sey uonduosuen onorIuAS
. ‘uondias

-UBI] JMOBIUAS ST YSIBunsip ol juem [£Aanose vondoasuen jxsu sy, (q)
*3[0 E SE 20 © JOo SuIpooua a1) ur paajoaur uoneardia)
~UI 34} wWoyy jualajyip aunb s1 s1ons] 9j8urs pue sprom jo Surpear sip ur voneyaid
-Tayut Jo pury suyp yng ‘padseId uosq SBY pIOm 2[OYM S [UN aIk sIaps) o(Fuls
911 18YM 938 Jouura am - saBessed apad Ja199s s, uralsUASNIA SuIqUDSIRY Haym
remnonmed ur - uayjo A18A "s19)39] 9[8urs Jo asusnbas e se Jou puw YEIsan B se
pios uepum ot dseig o) saLn 351y auo ‘Fuiquosuen uayps ‘uondaaad jo ajor

3y} 5WI3TU0D Yomm Jutod B oy 3snw am uonduosuey omydesd jo FJupeads
[Fqeasap It §1 Ioau ‘aqissod
jou st vonduoasuen omydesd nypey Aje101 v 09 Apueogrudis Aea uwo 1x9)
N0 SIS YIIYM SaUI] 913 JBY} ‘JUSIAYIP JOO] S19119] UsImMpury o[Fuls o] 18]
PIO23I1 10U Op aM 35NLI3] ‘SNOIAGO §91093q JUSWA[3 SAN3a[as o) 21ey Apear
~[e 1ng ‘232 ‘palIasul SB JX9] PILISsUL ‘palafap Se 1Xa) pajaap ‘SUORIIs SE SUONIas

“219 5,9, §8 5,9, ‘5,q, SE 5,q, 'S,B, S¥ S, ¥, SQLIOSUBL 9M JBY) SUBSLI ST,

‘uonduosuen amyded jo jew st vonduosuen jo oadse [RuBWEpPUN] W (B)
isiduosnirew s uaisusSnip Suiquosuen uaym

U0 STI20J YAN I8 9M - [OA3] OIIRI B UQ - SISAIIUL JUAIDIJIP 9] 318 TBUA
"HONg NIFW 01 juelea
B 52 .10 ‘smmoeL], 2 ‘|, Junpueyqy,, s,uaisuadnipg 01 s0u0Iojax [enjXaualul ue
se 31 Surpooua uaym paxnbar st ueiy a8pajmotny pur juod pues [euoneyardionun
juatayrp v sonnbaz Funmow v sieaq yomym vondiosur ue se ONNTANVHEY
glg Sums 2y Aynuapr 01 ‘spdwexs 104 ‘suoisoop [euonEiaxdonNm
jualajyip jo Ajsuea ® winy wl sssoddnsaid suopuaauos ssey) jo wogeord

aptd siopy

£69
Aemion uafiag jJo AjIsIzATun)
uaBiag LO0S-N SQAIYDIY UTAISUIBNIM U],
1€ 195219855 H PIereH 1a[yatd story

"UonIPa j00q B 1340 sefejuea
- PB 9[qBIIPISUOD SBY UOISIOA D[GBPRAI-IUORL ¥ SPUBLWAP 25317 0 prefal pipm
-sorenn ur pajund ‘paunrapun AJfERuISiIo SEm UYDTGM “IX9) SABY SWI JWIES A1 18
N ‘9uU0 PIZI[BULIOU ¥ UeL) Ja1pel jnojurid wmeial] pe ue asooyo o) *F'a isdem
JUAI3IJIP Ul Way) 9ZI[eal 0] pur ‘uoneiaidiojur Jo SJaAd] JUIIAIJIP S1P UAIM]
-aq 250042 03 Liqissod oty Jasn 9 aa1d 01 ‘o[qeIoenxs pue Joi[dxas - saauaIay
- Jip 1oy} pue - uoneiardiayn Jo sedfy o ayew 03 9[qe 2q o} [enuajod s uonipa
JIUDIID2[3 UB U] “JIAIMOL] ‘SOI] UONIP3 JIUONI2[9 U PUE UONIP3 j0O4 B U3am]
-3Q 20UI3IJIP 3y], "‘UoHIpa d1UeId2[d ue Supedaid ur parsjumooua aIe SB SWaf
-qoid euoneiaidionu Jo sad£y owes aip sjuasard uLIo) }OOQ UT SSBIUDRN S UIAIS
-UaBNIp Sunipg “yiom [euoneladiojur ST JIom Bunipa 1xa] AUE 124 ‘194021010
‘amjeu Ul [euonelardiajul pue JATI02[3s AJ[enuassa sI j1om uonduosuen ey s
VM 78 pom uonduasuel) Jnoqe SUOHEIIPISUOD 3591} WOIJ UOISN{OU0D Y],
‘[oAa] onoejuAs sty wosy rrede 1day oq [[Bys [9a9] orydesd
21} 20UIS - SUONJIaSUl SB PUE SIUBLIEA SB J0Q ‘SUOMIISUl oI 9l SUIBS 91
12 2IyM SJUBLIZA 9p0OUA 0) AXRSS209U SI 1 18T "2 smo[[og 11 sny wox “sadfy
Japo im Junapiojur Agatay noiiim a[qeidrnXa aq jsnu sad4y ajdurs auyy eyl
suEal yorym ‘a[qrssod se Iajo yoea woly 1rede yonur se sarrodajed asay deoy
0 951 SI 31 “yJom uopduasuen Yloows pue JuglsIsuod 10y apiaoad o Iapio uj
*suorajap Jo Spup| JUAIafIp usamiaq
Areomydead sstpang ysimfunsip 01 Ases aq aidurexe hﬁ pInoMm 11 :sease Jemonted
I191 UI 9ATISNEYXD prepuvis uondimsuen s,y JO S8p02 a1 a1 JaaN ‘Bur
-xapur 123[qns oy Jo Surpooua [eonewwels 10J §9P00 JO 195 B spnjoul ajdumya
10J J0U §20p UONBIJIsse]o 2 [, ‘Terauaf ur Surpooua 1%2) 0] UOHE[AT UI SAQSTIEYXa
SUBatl ou Aq st aray parussaxd se sadf) uonelaldialul JO UOHIEBOIFISSEID ML,
*21a S9[qE} JUAJU0D
‘SaQn ‘SUOTIINISUI [BLI0IIPD ‘AUBI[SISIW UMO § JOI[NE oy} 10] A[IB[ILIS PUR ‘yons
se J1 [aqe] 01 aoejaid se suopouny Sunpawos araym "§+a JdUoSnUBL U UTKHIM
%9 jo sadf) juarepyip JurysinBunsip sorpdun ﬂouabmmm\uh reuonisodwoy)
*030 s1dLIOSNUBI JOUJ0 UT SJUELIEA 0] nok apind yorysm syutradAiy 1of mof
-[B $9p02 yang "J9qLI2SUL A1F JO JOYINE I Joylie Aq spew se “oje sjdussnuew
1310 01 suone[al ‘sy1om paystqnd o) saouale)al ‘suostad Jo SAUIBU ‘Saduarajal
[ELID)YD PUE [BLIIIUI PIOS3I YOTYM SIPOD SI AJI[EnIxalaiul Aq UBDW [IBUAM
- AJITEMXa1I23uT pUE SaImjea) [euonisoduion jo uon
-ensiZar o sFumny 1o Suowe UI3dUOD §3P0D 2SI, "UCHEXIPUE ST LONS ‘SPUTH

vonpraadiajig pup spxa ['suodiosuns |

69

SNOLBA JO SISATRUR puB [EAIUaI a1 saaras Surpoous Jo adf) euy v (8)
*A[JUaIaIfIp pepoous pue pajenSiquesip
9q PINOYSs SUOTIoUNJ JUAIaIp It sasaguared souary (012 uonmysqns ajqissod
e Supeoipur ‘uonsiep © Bunsad3ns J'9 195N [BUONUIAUOD a1 SIPISeq) SUOLOUN]
Juarayg1p annb aavy ueo ‘apdmexe 10J ‘sSRIUOEN §UISISUISNIAL UT SasaljuaIng
*sjrwr] [eanjoeld unpm paysmBunsip 2q UED PUB PINOYS Jaasteym ysmIunsip
01 parmbar s1 Iaquosuer] 9y} 210ja1ay], ‘ydeld aures 2y} Jo SuOIOUny JuSIIJIpP
usamieq FurysiFunsip xoy sanmqissod sapracd waisAs apoo s,V M ‘uonendiq
-UIESIP [JED 9M JBUM Ul paAfoAul ureSe st uonmaidiojul Jo adfy saqiouy (3)
"SIaIBW JO 9sN § Joyine 2y 1o sjiqey orydeifoypio
repnopred se suTy) yons NoQe UOHEBILIOJUT JAIRL INQ “9X3] 51 UO SOLBJUSUIIOD
rearydosoqyd A1dun jou saop suy YA JO 9580 9 uf -ajeoaidde JySiw Iasn
3 Yorym pue ‘9A1d 01 ajqe aq Iyt - 1%3) oY) M A[AIUWIRUT PaioM sey ay
20UIS - JaqUISUED a1) Yolym uoreuedxs e pasu puawouayd 1x9) SWINSWOS
TeutSLI0 S1f 0] ouq IasN AN} SIDJAI YIYM
JUSLILIOD 8 3Bl [[IM ISQLIOSUBRY 9] 213y :9qLIOSURY 0} S[qissodunt Jo JnoLjip
A1aa aq B safessed jxa) awog “01a [[e 18 pataydioosp aq jouur IIyM IX3] 10J
sapoa ‘safessed ajqide) A[Iead J0U 10J SAP0I “JIasIT SulpoauD SY1 JO SSIMDILIND
ay Surpiedal Quiensoun Fuygesipul $9poo UBIUOD os[e pmom dnoid siyf,
"wajsAs apod 2y ur safuBd Jayunj o) praj saA[asuay ur WS a1 ‘uon
-euerdxe pue uonejuaumoop Jadeid pasu s1ayew asay [, JdUasnuB UrBHED B Ul
(s152197ur urewra2 dn Suimoriog) sepoo urepran Surdjdde Lynonggip sey Jaquasuen
aty 18 29 *F-2 S 1] “suonduoasuen oi Wim Ylom Joyny AU J0J UOHBULIO]
-ut Juspodun urEIuod [[IM PIsn walsAs aip Jo uoneayads o ‘uede pue swn
pajepdn st yormym ssaifoxd ur 310m JO UONIS[Jal B ST wWIsAS 9poo i) 90UIg
‘wI3]sAs apod oyl Jo asn 3y} pue ssao01d uonduosury ap
%91 a1 UC SusUNUOD pire suoneuridxa s1aquosuen pue ylom uonduosuen oy
ul walsAs 3po9 Iy} JO IsN I JO UOTIEIUAWINSOP Swasuod dnoid Yy v (2)
*221n0s I Jo a8pajmouy sesoddnsard
sny], "songo[eles 0] S30UAIRfar pue ‘sajep pue wiSLo S ‘rewduo 9y Jo Aroisiy
a1[] INOQE UOHBULIOJUT SB [[2M §B ‘SpUBI juaIajjip ‘umipow Supum ‘fewSuo o
JO 9215 §B YoNs sIenew [eHalew SUnIaouos UonBULIO U] WEIU0D Sap0d S5aL],
*201nN0S 2y}
Jo uonejusWNOOp 10J §apo2 jo uoneordde 2y sapnjoul ANANSE Yunoj v (p)
*2]qI55303 2q [[IM SUOISISA PIZI[BULIOU S PUT S[USYINE I Yloq
ey s1oire [eowjderFoyuo Jo 9sBD QY3 Ul SUBSWI ST ‘yloq JoJ siseq ay) apraoid
01 s8y 31y uonduosuen sty ‘uonduosuen sues £19a 3yl woly synojund paz
- [euron pue onewWOdIp [[20 am 1eYM yoq sonpoad of ajqe Furaq je wire om JJ

4211 Sto1y

Commentary and Opinion

Beyond the “descriptive vs.
procedural” distinction

Wendell Piez

Mulberry Technologies, Inc.
17 West Jefferson St.
Suite 207

Rockville MD 20850

EMAIL wapiez@mulberrytech.com

There has come to be a consensus that the “procedural vs. declarative” distinction is useful,
if only as a rough guide, in the design of markup languages. To understand how and why this
is the case, we need to ask questions that are usually left unasked when this principle is
proposed, such as “is it the model (the schema) that we consider to be descriptive, or the
tagged document?” or, more deeply, “why do we validate our markup anyway?”

A number of our fundamental assumptions are not always true. Sometimes a schema
might be more than a “go/no-go gauge”, becoming a diagnostic and investigatoryinstrument.
Sometimes marked-up documents look backward (as representations of something preex-
isting), not just forward to processing. Sometimes semantic opacity is a feature, not a bug.
In order to understand the power of markup languages, it is helpful to keep in mind that they
are both technologies and a species of rhetoric. New characterizations and categories of
markup languages may help focus our design efforts.

Why are we still talking about the “descriptive/procedural” distinction? The
conception continues to be a focus, because it continues to have explanatory
power. Yet at the same time, it clearly demands quite a bit of refinement when we
look at the increasingly broad spectrum of different markup languages, and
markup language applications, that are now proliferating. Descriptive? Of what?
Separation of format from content? What’s content, and what’s format? Apart
from its format, to what do we refer to determine what “content” is; how do we
specify it, and how do we go about designing tags for it? What kind of thing are
we trying to model, anyway?

The traditional arguments around the “descriptive/procedural” distinction'
have detailed a number of advantages to descriptive markup languages (also

1 Two “canonical” references | consulted ([Goldfarb 1990] and [Sperberg-McQueen 1994]) make the
distinction between “descriptive” and “procedural” approaches. To label the different design strategies
“declarative” and “procedural”, while observing a distinction with a history in computer science, is
evidently problematic in this context, mainly since those terms are so relative. In this paper, as | am
deliberately reflecting on the distinction as traditionally rationalized, I’ll use the terms “descriptive” and

Wendell Piez, “Beyond the “descriptive vs. procedural” distinction”
Markup Languages: Theory & Practice 3.2 (2001): 141-172
© 2002 by the Massachusetts Institute of Technology

142

Wendell Piez

loosely identified as “generic” languages) over their procedural cousins: scalabil-
ity, reusability of data, and so forth. While these advantages are demonstrably
real, nonetheless the evolution of XML technologies, especially in such applica-
tions of XML as XSLFO, SVG, SMIL, or even XSLT,? shows that the opposite
approach to designing a markup language also is playing an important role.
Sometimes, it is clear, a procedural language is exactly what we want.

At the Extreme 2000 conference on markup technologies in Montreal, Allen
Renear picked up the task of scrutinizing the opposition, proposing an alternative
framework for which he introduced terms from linguistics and speech-act theory.
I’ll return to Renear’s argument; but in order to get at these issues at a deeper
level, I start by pointing out one begged question, and potential ambiguity, gener-
ally at issue when we assert these categories. When we describe a “markup lan-
guage” (or a “tag set”) as descriptive or prescriptive, are we talking about model
or instance? That is, are we talking about the proposed, implied or asserted
semantics of an abstract model for a document type (classically, as formalized by
a DTD); or are we making generalizations about the tags in use, that is the
(implied or effective) semantics of element and attribute types as instantiated in
documents? It matters which one of these we are describing, not simply because
they may be different (in the ideal case they should perhaps not be), but because
the very fact that the two things (DTD and document) might possibly end up
“meaning” something different in practice, raises questions about the relation
between model and instance. In the real world (not to put too fine a point on it),
sometimes users “mean” tags in ways not intended by designers, and this fact
bears directly on the problem because it indicates how a model’s “description™ of
a document fype may not be exactly what a document’s own tags “describe” (or
may be purported to describe, depending on who you talk to).

Now any designer will seek, and will probably assume, that the semantics of
model and instance should be the same, or at least not at cross-purposes. When
they diverge, we call it “tag abuse”, thus begging the question by simply handing
authority for correctness to the designer’s “intent”, whether stated or implied. In
fact, since we generally design models first and write instances later, it is a design
goal, necessarily implicit and always assumed, that the model be complete and
well-fitted enough to the problem domain, that its semantics® can be effectively

“procedural” when referring to the traditional dichotomy, and occasionally loose synonyms such as
“generic” or “presentational” when it serves my purposes (one of which is, of course, to clarify what we
might mean when we use these terms).

Another examination of this issue, tracing out several possible “axes” along which distinctions may
be made (and thereby anticipating the arguments of Allen Renear [Renear 2000] and myself), is Mavis
Cournane’s. See [Cournane 1997].

2 Note that in this context, XSLT is procedural as a markup language (the tag set is closely bound to a set
of processing requirements), while being declarative as a transformation or processing language: it is
procedurally bound to a declarative application. This in itself is an indication of how relative these terms
are.

3 Note here | specifically mean the implied semantics of the model, not any behavioral or operational

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction 143

reflected in instances without strain. But it may also be that to engineer a system
in which this ideal may be realized (or nearly realized), we had better come to an
understanding of how the model and the instance relate to each other not just in
theory as an objective, but also in practice, where things always seem to have at
least the potential of falling short, and where nothing is so certain as the human
capacity to introduce uncertainty through creative adaptation. I will suggest that
model and instance need not always relate to each other in the same way; and in
fact that the way requirements dictate they must relate to each other in any given
application of a markup language, has a direct impact on the suitability of differ-
ent strategies available to the designer. Since these strategies are commonly
framed by distinguishing descriptive vs. prescriptive, declarative vs. procedural,
or any of several other oppositions down to “separation of presentation [or for-
mat| from content”, it is ultimately this distinction that we are illuminating.

To ask how model and instance relate to each other is to ask, in a very gen-
eral way, about the process and role of what we usually call validation, that is the
process by which model is applied to instance. (It is not the only such process;
but the nature of validation — and usually, its purpose — is such that it can be
taken to stand in for others.) So the first thing we need to consider is what vali-
dation is and why we do it.

| Why it matters what “validation” is

What is “validation”? As soon as asked, it turns out that this is very much a
live question. XML and XML-based technologies have lately been serving as an
incubator for all kinds of new approaches to validation. Some seek merely to
recast inherited notions of validation into new forms (presumably more tracta-
ble), some seek to enhance them with capabilities of alternative validation regi-
mens, and some may go in entirely new directions. To say nothing of non-XML
approaches (and I hope we see plenty of innovation on this side as well, insofar
as there are certainly significant features of texts and interesting problems to
which XML does not easily lend itself), in XML we have well-formedness check-
ing, DTD validation, XML Schema, RELAX, TREX, XML-Data Reduced, Sche-
matron, Examplotron, etc. etc.

It is not my concern here to consider these in any detail, or even to distin-
guish between them, except to point out the interesting (and significant) fact that
they do not all take the same thing as their object of examination. Basically,
when we validate, we take an instance (an “XML document”) and a model (the

semantics that may be actuated in code. As Robin Cover points out, between DTD and the markup
constructs as implied by the syntax, SGML/XML is a fairly weak format for specifying the latter [Cover
1998]. We are always free, however, through names, relationships, or explicit documentation, to assert
informal “human” semantics: to say, that is, what we think we mean.

Spring 2001 | Markup Languages: Theory & Practice

144

Wendell Piez

“schema” or “specification”), and compare these for purposes of saying whether
the instance conforms to the model, or in what ways it fails to conform. But
some of these approaches work on an XML document as a text entity (a
sequence of alphanumeric characters, some of which constitute data, some of
which constitute markup, as per the XML Recommendation [XML 2000]); while
others operate on some kind of more complex structure, typically a document
object or “infoset” held in memory. An important aspect of this is how the for-
malization in XML of well-formedness gives us a new platform on which to build
and standardize validation techniques. A definition of “well-formed” (as distinct
from “valid”) brings with it the capability of doing what could be called a “plain
parse”, rendering a sequence of characters into an abstract information set with-
out otherwise concerning ourselves with the higher-order semantics of elements
and attributes. This is important because we may not know or care about such
higher-order semantics every time we process. And when we do, testing the con-
formity of an XML document to any particular semantic profile (however repre-
sented) becomes, properly, just one more kind of processing, albeit of a distinctive
kind (or to a specific end). Thus validation, considered in light of its purposes
and often its methods, is actually closer to querying, say, or to transformation,
than it is to parsing as such.

The proliferating approaches to validation also demonstrate that (among
other things) any XML document — whether considered as a stream of charac-
ters or as an abstract information set — potentially exhibits a range of different
features or characteristics which we might be interested in testing:

¢ Constraints on structure of elements and attributes by type (“a head is permit-
ted inside a chapter, but a chapter is not permitted inside a head”).

¢ Conformity of data elements (element content or attribute value) to specific
lexical or other requirements: data type integrity; “authority control”

e Referential integrity of links and pointers

* etc. etc.

Any or all of these might be considered to be properly within the realm of
validation; and more to the point, the list is as open-ended as we wish it to be.

Validation and workflow: strict validation

The intention or purpose of validation is to subject a document or data set to
a test, to determine whether it conforms to a given set of external criteria. Valida-
tion may thus be distinguished from processing in general, which may not bother
to conduct any such tests (or which may use other tests). It is precisely because
the range of features and characteristics in which we are interested, and which we
need to be able to constrain, is so open-ended, that testing becomes a useful thing
to do in practice. (If it weren’t, our tools could all be built so as not to need
tests.) Our need to test is simply explained and understood (so much so that it

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

rarely needs to be explicated): if there exists a point in a process where it is less
expensive to discover and correct problems than it is to save the work of testing
and fix at later points, it is profitable to introduce a test. The ideal workflow, that
is, is one in which we make any correction or adjustment to the materials being
processed at the point where it is easiest and least expensive, making allowances
for the expense of running tests. This assumes, of course, a workflow that is suffi-
ciently defined to make this possible.

We validate, that is, because we want to know in advance of something
whether our data set conforms to a set of specified requirements. Notice a key
concept we have introduced here: such an operation only makes sense, and only
becomes necessary, in an articulated workflow. Validation, that is, is a type of
“quality assurance” applied at a particular stage in processing. We need down-
stream processing to be predictable, and wish to engineer away, to whatever
extent we can, any possibility of having to decide how to resolve or render any
given anomaly (however interesting it may be) at a later stage of processing.
Rather, we want to invest energy now in assuring that our data already conforms
to a set of clearly-understood criteria.

In fact, this is nothing more than the application of a simple rule of indus-
trial engineering, here applied to information systems. In effect, we are designing
a process (even if a simple one) — an assembly line. Validation provides us with
what is called a “go/no-go” gauge.

This is not merely an analogy. If we look at the beginnings of mass produc-
tion technologies, we find a significant transition occurs in the nineteenth century
with the development of the“American System of Manufacture”.* What distin-
guished this approach to mass production from previous efforts is that the
ancient principle of division of labor was joined with a new one: making the
component parts of the product to be interchangeable. Division of labor, of
course, has been practiced for many centuries and in a range of societies world-
wide. (Nor is it limited to human culture, being found also in the natural world.)
But by itself, division of labor is not sufficient to win the economies of scale that
result from modern manufacturing methods. As long as parts were not inter-
changeable, production of any manufactured item had to be done on a piece-by-
piece basis, each piece being unique. Only when the individual components of a
manufactured item were submitted to quality control mechanisms, such as jigs,
gauges, and quality checkpoints, could higher-order economies be realized.’

A “go/mo-go” gauge is a device used precisely to provide such a check. The
utility, and ubiquity, of such a device is instantly recognizable to anyone working

4 As it was dubbed at the Crystal Palace Exhibition in London in 1851, where the arms manufacturer Colt
demonstrated interchangeable parts. Needless to say, there is nothing inherently “American” about the
principle (an idea that had been around, in Old and New Worlds, for many decades) or its application.

5 See [Hounshell 1984].

Spring 2001 | Markup Languages: Theory & Practice

145

146

Wendell Piez

Figure 1 | A go/no-go gauge, with accompanying jig

The gear-shaped device is a wire gauge. Either a length of wire is a specified thickness, or it is
not. Pictured with the wire gauge is a draw plate, used for drawing out wire of different gauges
(thus serving as a jig). The draw plate must necessarily conform to the gauge in its measurements
(and be checked from time to time to be sure it has not worn).

A DTD or formal schema functions as a gauge when we use it to perform strict validation,
as a jig when we use it to configure, for example, a structured editing tool.

Thanks to B. Tommie Usdin for lending these examples of the tool-maker’s art.

with a complex workflow — especially a process which already involves a com-
plex division of labor or differentiation of roles.¢

Although they are no longer physical objects, we test our information sets
against abstract specifications for the same reason that in a factory, the machine
tools are set up to mill parts to exact specifications, and are frequently tested (the
tools themselves, that is) to reassure conformity. In fact, the markup industry’s
leaders have unerringly, if not always deliberately, been proponents of open stan-
dards for markup technologies for the exact reason (among others) that it is stan-
dards-based interchangeability, when applied to information objects, that
provides us with the coveted advantages for our data of vendor- and application-
independence, of modular architectures and layered systems, commodity tool

6 A significant detail about gauges used in machine tooling is that they may be crafted, and must be
maintained, by hand. In effect, the craft shifts from the creator of each individual product, to the industrial
engineer who develops a product line.

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

markets, and long-term data stability. (Not that any of these things become easy
to achieve even on a standards basis: but at least with standard ways of judging
correctness, there is some hope for them.)

Whenever a validation technology is applied this way, I think it appropriate
to call it “strict”: I want to convey that it proceeds by posing a binary choice:
thumbs-up or thumbs-down. Note that this does not indicate anything about
what, precisely, is being validated (structures, data types, referential integrity
etc.), or even how extensively, but rather the manner of and rationale for valida-
tion. The expectation is that if a document instance fails to validate, there is
something wrong with it, and it will be diverted away from the main workflow in
order to be “fixed”.

Strict validation is very usefully decoupled completely from specific applica-
tions. (The measurements of the parts of the gun may be tested apart from the
gun itself.) The effect can be to loosen the bindings between stages of the process
or layers of the system, allowing agents to work more independently. (Gun parts
can be manufactured in one place and assembled in another.) “Can we process
this in our system?” An electronic document, like any other manufactured com-
ponent, must satisfy strict constraints in order to assure predictability down-
stream; but if we can validate apart from the eventual application, the producer
of the document on one side, need not have any knowledge or interest in the
operation to be run on the other. This decoupling creates opportunities for reuse:
the familiar hub-and-spoke architecture of markup-based publishing systems —
with a generic format in the center and different formats for production or inter-
change on the outside — becomes practical. In many cases, validation is therefore
useful (as has not escaped notice) for specifying contracts, as the mechanism for a
gateway (to an authenticated “safety zone™), or as a “seal of approval”.’

While challenging to engineer and document, markup-based information sys-
tems that routinely subject their data sets to such rigorous specification and test-
ing — and especially when built to standard specifications, enabling them to take
advantage of commodity tools — have again and again proven to be both scala-
ble, and more flexible over time, than single-layered systems handling media only
in presentational (or application-specific) formats.® The principles underlying this

7 This was especially the case in systems like those for which markup applications were first developed: a
formatter, for example, running replacement macros over a marked-up text, has to work with a narrow
range of structured inputs; but by its very nature (it must use available resources to process what’s there
and not expend resources on exception handling), it is not coded to analyze abstractly whether a given
data set’s markup conforms to the expected pattern. The advantages of decoupling are here, that limited
processing power can be applied strategically to one job at a time. Decoupling provides similar
advantages when processing is distributed across organizations or along a workflow or supply chain.

8 Contrasting approaches would be dedicated word processors, which are generally only suited for end-to-
end processing by a single person and not for complex editing systems with demanding layouts; or
virtually any publishing system for print or the web, which (except experimentally) have only served to
automate the very tail end of production.

Spring 2001 | Markup Languages: Theory & Practice

147

148

Wendell Piez

are exactly those that allow a factory to become more efficient and productive
than individual craft workers, once basic problems of workflow, parts specifica-
tion, machining and conformance testing are dealt with.?

Validation regimens are useful (and sometimes necessary) because they
stretch processing along a time frame, making it possible to encapsulate tasks,
divide labor into roles, and systematize and routinize processing. In an automated
system in which a document may take many forms in its passage — from
authored drafts to editorial cuts to assembly to formatting and presentation for
many media, through a range of various post-publication transformations includ-
ing indexing and aggregation, only after many changes to end in the morgue or
archive, or perhaps never ending at all but persisting as part of the cultural cur-
rency, like Shakespeare’s plays or Lincoln’s Gettysburg Address — dependable
processing could simply not happen without validation. Albeit informally and
manually, it happens in paper-only information systems all the time. Appropriate
validation is exactly the practice that makes it possible not to be applying human
intelligence repeatedly to mindless processing tasks, or to resolving (inefficient)
decision-making tangles. Large complex systems learn this the hard way, even
when they have lots of cycles to burn. Validation allows human intelligence to
work better because it only has to concern itself with one set of standards at a
time, not with all standards, for all conceivable uses or needs, at every point in
the process.

Finally, by supporting interchangeability, external means of validation pro-
vide a foundation for an entire economy or even (at the grandiose extreme) for
“information ecologies”, because they introduce network effects among applica-
tions. So we see that XML applications, unlike older applications based on pro-
prietary formats, work not to compete with each other, but rather to complement
one another, since each can work in different ways to support a common data
set. Accordingly, the usefulness and value of the entire information system (and
thus of each application within it) goes up exponentially with the addition of
each new application. This is exactly what happened when, for example, gauges
of wire or threads of screws were standardized; and it is what is happening today
with data encoding technologies.

This is the compelling and overarching benefit to standards-based validation,
and it has been provided as a rationale for the deployment of DTDs (document
models) in markup systems since their inception.!® But it is not the only conceiva-
ble way of applying, or reason to apply, validation techniques to encoded data.

9 It may be that this can even serve as an indicator of those kinds of processes that are receptive to
automation. For example, in the case of elementary education, can we define “workflow, parts
specification, machining and conformance testing” sufficiently to automate it? Do we want to?

10 See, for example, [Goldfarb 1990]. SGML DTDs provide much more than a model against which an
instance could be validated: by indicating tag omissibility, SGML DTDs (along with their associated SGML
declarations) also give critical information about how lexical information in an instance (or the lack

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

Validation as discovery: loose validation

The usefulness of a validation regimen in framing a clearly-defined workflow
makes an extremely compelling case for it. But a gauge that can be used to judge
a piece of work as pass or fail, can often be used as easily as a measuring device.
The same techniques (parsing or querying an instance, comparing the instance to
a model) can be used in a more flexible kind of application. Preceding the opera-
tion of judging, is the operation of observing. What can we see about this data?
Where does it fail to conform to a given pattern? Validation is essentially ana-
lytic: data may or may not satisfy given constraints; but our exception-handling
may be permissive. In contrast to the use case described above, I call this kind of
validation “loose”. Note that it is the means of application that is loose or strict,
not the routine in itself (whether it be referring a document to a DTD, an XML
Schema or what have you!!) — although typically, it may be expected that the
type of processing in a loose routine may be less comprehensive, but possibly
more narrowly focused, than a strict routine, and so, accordingly, that some tools
will be better suited for the work than others. Such suitability stems not from any
fundamental differences in technology or methods, but rather from the relative
adaptability of different tool sets to the different requirements we seek to address
with them.

In other words, we are not using a validation mechanism — a DTD, a
Schema, a specialized processor — as a simple gauge. It may be more like a cali-
per or a scale, a measuring or reporting instrument.

It is possible to envision, in sophisticated systems, looser routines combined
with stricter tests. Validation routines may even be connected in series or staged
from looser to stricter. But in its purest form, we might expect “loose validation”
to be most useful in an altogether different setting.

In a paper delivered to the 1998 Markup Technologies conference, David
Birnbaum sketched out such a scenario [Birnbaum 1998]. Birnbaum describes an
application in which an historical edition of a dictionary is being encoded in
SGML, posing a dilemma for the encoder when the dictionary violates its own
structural conventions. Does the encoder intervene editorially, changing the text

thereof) is to be interpreted. This, however, can be taken to be secondary, as such lexical optimizations
are only possible given a deterministic element structure. By disallowing tag minimization, XML reduces
the role of the DTD almost to its core, to provide a gauge or pattern for testing the element structure of an
instance against a set of external constraints.

11 In XML terms, “validation” is necessarily strict, and with respect to a single given DTD (named in the
DOCTY PE declaration). In XML terms, “loose validation” is a contradiction in terms, and it might be
better if one were to speak of querying, structural pattern-matching, etc.

Likewise, just as in XML terms “valid” is itself a binary condition, it may be useful to consider
“strict” an absolute in this respect, so that one would not say, for example, that one querying or type-
checking regimen is “stricter” than another. Rather, strict would by definition mean “either acceptable or
not”; whereas loose would be any routine in which a question may be raised whether the document
should be rejected or “corrected”, or some alternative course taken.

Spring 2001 | Markup Languages: Theory & Practice

149

150

Wendell Piez

Figure 2 | Brown and Sharpe 599-100 0-1.2" Digital Micrometer

This model is available with an RS-232 port. High-resolution image provided, with permission,
by Brown and Sharpe, Inc., of North Kingstown, RI (http://www.brownandsharpe.com).

to fit the normal model? This would be unacceptable for a project given to repre-
senting the record, not changing it. Does he relax the constraints of the DTD?
Then he loses the capability of modeling properly the majority of the dictionary
entries, which are structurally conventional. Does he model the exceptions in a
parallel structure? This is possibly a workable compromise, but is less than ideal
inasmuch as it is precisely that the anomalous entries are structurally exceptional,
that the encoder wishes to trace. “We are not conditioned to think of syntacti-
cally invalid SGML as a natural or desirable state, or as a practical or appropri-
ate way of representing syntactically contradictory source data”, remarks
Birnbaum. He concludes that markup-based systems could be far more amenable
to the special requirements of scholars working on legacy texts, if they had some
capability to handle structurally invalid markup, at least in some kind of transi-
tional mode."2

How should we call this approach to markup? The primary goal of markup
in such an application is apparently to describe a pre-existing object. In the
extreme case, the objectives of future processing (or, more narrowly, of certain
kinds of future processing) might be postponed; at any rate, the purpose of the

12 Birnbaum also explores the issue in an earlier paper, arriving eventually at a moderate position: “I do not
advocate, of course, that we prepare and publish invalid SGML, or that SGML processing software be
enhanced to react affirmatively not only to valid SGML events, but also to SGML errors. But | would
suggest that when we perform document analysis on existing texts, we recognize that some oddities may
at least logically (although perhaps not practically) be represented not as document structure, but as
violations of document structure.” See [Birnbaum 1997].

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

markup is to identify and trace those features of the text as object, that are inter-
esting and important to the encoder. We might like to call this kind of markup
“descriptive” — but since that term has already been appropriated for an entire
species of markup applications that do not take such a radical position, I propose
the terms mimetic and exploratory to distinguish it.!?

Now, it should be admitted that in its pure form, exploratory descriptive tag-
ging would be somewhat paradoxical, since the effort is clearly given to tracing
textual features precisely so that patterns, as well as anomalies, can be recognized
and exploited — in principle, recognized and exploited by automated processors
(or we would be using a pencil to do the work). Even if the primary goal is to
describe something pre-existing — if need be, to develop a language capable of
such description — it remains the case that the goal of this activity may be to
make automated processing over this description possible. Or is the latter goal
the subordinate one; do we want to automate our processing only in the interests
of a more exact and complete description? An answer to this question is very
rarely stated explicitly. The potential stress between these objectives is something
we will come back to.

Still, the idea of approaching a text and doing a direct, ground-up develop-
ment of a set of markup conventions, without any great concern either for pro-
cessing or for standards, has its appeal.* So, for example, it is not difficult to
imagine how a scholar might go about creating a marked-up version of a literary
anthology — only to change the markup and adapt it frequently, so frequently
that it becomes impractical to track innovations in markup with a formal model.
Different poems would have different features marked up. There might be style-
sheets and processors that work on the material, but no explicit model that con-
strains the entire thing. The markup would be more in the way of a running
commentary and apparatus, than it would be a single system bound to processing
in a particular way.

13 “Mimetic” in that it aims to “imitate” its source, and “exploratory” in that its design is adaptable. The
term “exploratory” was suggested to me by Geoffrey Rockwell, of McMaster University, who attributes it to
John Bradley (of King’s College, London): “One of the things that struck me about COCOA and XML is that
in certain situations you don’t know what the final hierarchy will be. In the early stages of markup of
something for study ... you need something flexible and simple like the COCOA tags. At the end you
should know enough to reencode descriptively. . . . | think John Bradley has called it exploratory coding.
The problem with COCOA is that it doesn’t let you make the transition from exploratory to descriptive
easily. Ideally one wants something where you can, once you are sure something is fixed, replace it with a
robust scheme” [Rockwell 2001]. The encoding syntax COCOA is a very flexible, non-hierarchical (stream-
based), event- or milestone-driven markup scheme, interpretable by several early open-format text analysis
packages.

14 Nor is there any reason why this couldn’t be done with XML ... such a project would reverse the usual
order (design and DTD development first, then mark up the texts), and concentrate on transcribing an
analysis of text in the process of analyzing it, then working over the markup to recognize patterns and
locate points of interest. Any models would only emerge later. Having introduced the notion of well-
formedness, XML should be very well suited for this.

Spring 2001 | Markup Languages: Theory & Practice

151

152

Wendell Piez

In contrast to more familiar kinds of markup, it is worth noting two particu-
lar aspects of exploratory, mimetic tagging. First, in this kind of work, the tag-
ging comes first, the modeling later — if there is a model at all, it is subordinate
to the tagging in the instance: it merely describes it, never dictates to it, and is not
deployed as a way of introducing constraints, except provisionally. Second, in this
type of tagging, there is no question as to what the markup describes (instance or
model): it is always the instance. The model does not exist a priori, but rather
only as a (second-order) description.

Interestingly, such a strategy seems to have been part of the original inten-
tion, at least among some of its developers, for TEI tagging:

A balance must be struck between the convenience of following simple rules
and the complexity of handling real texts. This is particularly the case when
the rules being defined relate to texts which already exist: the designer may
have only the haziest of notions as to an ancient text’s original purpose or
meaning and hence find it very difficult to specify consistent rules about its
structure. On the other hand, where a new text is being prepared to an exact
specification, for example for entry into a textual database of some kind, the
more precisely stated the rules, the better they can be enforced. Even in the
case where an existing text is being marked up, it may be beneficial to define a
restrictive set of rules relating to one particular view or hypothesis about the
text — if only as a means of testing the usefulness of that view or hypothesis.
[Sperberg-McQueen 1994]

Note that in this view, validation is a means not only of testing a text, but also of
testing the model that (provisionally) purports to describe that text.

After everything, exploratory markup will be difficult to justify for most
applications, especially over the long term. Since it does not rely on or stress
methods of strict validation, it does not share in the virtues of scalability. Like-
wise, it is difficult to envision how it could be conducted except by practitioners
who are expert both in markup technologies, and in the specialized subject mat-
ter they are treating. As an instrument of analysis and representation of a literary
text, however, this kind of technology would have great potential.'s And it is not
only the literary scholar who might be interested in this avenue of approach,
using document markup in a new way. It could prove to be a useful methodology
in psychology, sociology, economics — any study with a complex and manifold
data set — and a source of hitherto-unthought-of ontologies and modeling tech-
niques.

15 A fine example of a project of this kind is Willard McCarty’s Analytic Onomasticon to Ovid’s
Metamorphoses [McCarty 1999]. The design of the (non-XML) markup is unique and especially suited to
the indexing and tracing of interconnections that McCarty has developed for this poem. In the end, the
markup will validate to its own kind of model (its own set of gauges). But this is a case where exploratory
markup has grown directly into something more “procedural” (or at least application-bound).

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction 153

| Mapping the territory

Apparently there are two kinds of descriptive markup: the classical form
(what I will identify as “generic” markup) which works descriptively but which is
aimed at future processing, and what may be called an “exploratory” approach
to markup. In practice, the difference between these is primarily that exploratory
markup will not rely especially on strict validation, in particular when the
requirements of a strict validation regimen may interfere with the markup
designer’s capabilities to introduce new terms to refine or extend an accounting,
treatment or handling of the text. A more conventional generic language, how-
ever, validates strictly, thereby allowing more-or-less dependable bindings to
downstream processing. As we turn back to the classic “descriptive vs. proce-
dural” dichotomy, it may be helpful to keep this possibility in mind.

Descriptive markup and validation

Whatever the explanation, it is evident that “descriptive languages” work
(meaning, this time, generic languages but not their exploratory cousins). It is
possible, and at times highly practical, to have a formally-defined document type
that provides considerable advantages for processing — because it admits of strict
validation — and yet, that works by describing an abstract model rather than by
committing a data set to one or another kind of processing format. In other
words, although there is an inherent stress between, on the one hand, require-
ments for, or intentions or biases towards the kind of consistency enforced by
strict validation (a consistency that lends a data set to future processing), and on
the other, to the backwards-looking interests and tendencies of text description —
although these purposes are sometimes at odds, nonetheless they are not so mutu-
ally incompatible that a workable compromise, taking advantage of the capabili-
ties of either, is not possible between them.!¢

Generic markup languages occupy exactly this middle ground between being
bound to a certain kind of processing (the “procedural” side), and very loose lan-
guages (maybe they are merely markup conventions or practices), that have great
freedom to trace their subjects, but that may be hard to deploy or scale up in
production — the truly “exploratory” descriptive languages.

Consider Figure 3. In this diagram the exact placement of one or another
language might be disputed. At this point, the placement really matters only

16 Again, | do not think this is accidental. Ever since Gutenberg, the automatability of print has been
regarded as one of its most important features. Print applications in particular — everything from
newspapers to academic journals to catalogs of every kind — have always been at the forefront of
automated production systems precisely because the codex has been a successful technology, answering
to people’s wishes for granular access to information. As technologie s of production have evolved, so has
the codex form itself — with its headers and subheads, footnotes, indexes etc. — into elaborations that
require formal consistency to function. Thus, not just the technical, but the conceptual groundwork for
markup-based systems was laid by the evolution of print media.

Spring 2001 | Markup Languages: Theory & Practice

154

Wendell Piez

... validatio
e” <4 » “strict’

W3 Hec

Extreme

DocBook

conversion
TEI formats

“descriptive” €4 » ©

... descriptic

Figure 3 | Markup Languages mapped with respect to validation and description

Strict validation is only possible with a specified set of constraints, so it is at odds with any
application of markup that must describe the data with “higher fidelity” than those constraints
allow. Yet an in-between zone exists, where formal models provide for strict validation, but are
“descriptive” (and so, application-neutral) enough to support a range of different kinds of pro-
cessing.

along the horizontal axis. (Languages are also distributed vertically, both for legi-
bility and in anticipation of my argument to come.) On the left is a fictional lan-
guage, “Prof ML”, which (we can stipulate) is a set of markup conventions that
could be used in an exploratory way. Procedural languages such as XSLFO and
SVG are far to the right, indicating not only that their binding to processing is
strong (they are expected to be processed one way at least, if not others'?), but
also that if we wish to validate them apart from processing, DTD or even XML
Schema validation may not, by themselves, be sufficient. (Both XSLFO and SVG
imply, in effect, through their constraints on attribute values, notions of “data
types” that are stipulated over and above the constraints on element structure.
Whenever an attribute value is expected to resolve, for example, as CSS, XPath
or SVG path syntax — all of these amounting to distinct syntaxes apart from the
grammar of the document as XML instance — we will need more than a DTD to
validate.)

17 A procedural language could in fact target more than one application. XSLFO, in fact, verges on this by
targeting on-screen display, print, and audio output.

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

This diagram also dramatizes how, when strict validation regimens are intro-
duced, there is also necessarily a shift in emphasis for design. On the left side,
models are probably informal and implicit in the documents (since if we are not
validating, any model must be provisional); whereas as we move to the right,
models will become formal and explicit (in the form, say, of a DTD or XML
Schema); so a generic descriptive language that validates, ends up describing not
the text “as in itself it really is”, but a theory about, a model of, the text.!® To set
out to describe “the text itself” runs the risk, at least, that in the long term vali-
dation will fail on us, as the model fails to “flex” to the ever-open possibilities for
new description.

There will always be a tension, in some ways irreconcilable, between the
impulse to fit and form a text, or a markup language, to the peculiar circum-
stances and opportunities of the moment, and the attraction, and profit, of sub-
mitting ourselves to a regimen good for all time. How to position our design
between these poles, is what we are determining when we try to “tune”, as it
were, the level of abstraction of a markup language: we are determining to what
degree and in what respects it will be flexible, in what respects specific.!” But
regardless of whether the underlying rationale is a fiction or not (the notion that
there is one regimen of tagging that is good for all time — for some more nar-
rowly scoped tasks, it may not be a fiction at all), there is a kind of genius in
exactly that rough level of validation achieved by SGML DTDs (of which the
XML DTD is, for these purposes, a more refined form). Enough structure is there
to support workflow-based go/no-go tests; yet the models are semantically
opaque enough?’ to work generically. This allows SGML- or XML-based systems
to occupy a middle zone, validating up to a useful point, but also having enough
flexibility to work, albeit fairly roughly (only one hierarchy, etc.), “descriptively”
— at least when the tag set is well designed. That it is not truly exploratory is
something that has occasionally been pointed out as one of SGMDs weaknesses.?!
But any number of successful medium- and large-scale systems are demonstration
enough that a middle ground is possible — and a rewarding place to build.

18 The Greek word at the root of “theory” has a sense of seeing, beholding, with an implication that there is
some object there to be seen. Once we have a DTD, we actually have such an object. Of course, it can be
argued whether a reader or interpreter ever encodes anything but a theory of a text; nevertheless, it
should be evident how the necessity of modeling in a certain way, would influence the direction of what
(and how) the text is theorized to be.

19 Here my argument has been anticipated by Liam Quin. See [Quin 1996].

20 Robin Cover ([Cover 1998] and [Cover 2001]) assesses SGML DTDs as lacking in semantic transparency,
therefore inadequate for many modeling functions. But (as | will argue further below) the DTD’s semantic
opacity in this sense, is actually of benefit for certain kinds of systems.

21 See, for example, lan Lanchashire’s comments in [Lancashire 1995]. At that (relatively early) time,
Lancashire’s critiques addressed perceived shortcomings in both SGML and TEI, without always being
clear which is which. But many or most of his arguments would have been neutralized if TEI tagging could
be something closer to exploratory (which, given the role of the DTD in SGML systems, it could not have
been).

Spring 2001 | Markup Languages: Theory & Practice

155

156

Wendell Piez

Adding another dimension

When Allen Renear examined these questions [Renear 2000], he came up
with an analysis of the problem with several points of contact with mine. The gist
of Renear’s argument can also be presented as a diagram.

Note that Renear was not concerned to examine the role of validation in
these systems, so his horizontal axis maps only roughly to mine, distinguishing
only between different “domains” which a markup language might address. But I
think it is not unfair to relate a discrimination between logical and renditional
domains, to a distinction between the kinds of constraints each domain may be
expected to introduce, and the conditions of their introduction — even apart
from the semantics those constraints imply. Whereas a renditional domain must,
in the end, “validate” in its application (either the stuff formats properly, or it
does not) — and whereas it is likely that in order to do so, some markup seman-
tics may need to be observed that are outside the scope of DTD-based structural
validation (so that a DTD-based validation regimen would need to be supple-
mented to be complete) — the “logical” domain, on the other hand (especially as
it concerns what Renear describes as “content objects”) might well be defined in
such a way that a DTD is sufficient to describe it.?

domain

logical renditional

“procedural™

2.z “be-a-title e.g “he-rendered-

imperative

{"performative™) in-bold”

“descriptive” of (M
content objects e.g. “is-rendered-
e “is-a-title” in-bold™

indicative

eri plive/Procedusal Distinetion is Flawed” (Extreme Markup Languages 20000

Figure 4 | Renear’'s Map

Allen Renear’s speech-act linguistic analysis of markup languages. See [Renear 2000].

22 Recollecting Robin Cover’s argument about the semantic capabilities (or rather, the lack thereof) of
SGML/XML ([Cover 1998]; see also [Cover 2001], it may be that we have here a case of the tail wagging

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

What my analysis adds is the suggestion that to bind a tag set to a particular
kind of processing (whether it be in the “renditional” domain or not) implies
both strict validation, and a range of other considerations and constraints such as
data typing or referential integrity between elements (which may require more
fully-featured validation mechanisms than DTDs alone); whereas to work in the
“logical” domain puts us in a relatively free in-between zone, where validation
provides us the benefits of predictability, control, and a model-centered design,
but where the semantics of the markup itself does not rise to the level of specify-
ing behaviors (without the kinds of mapping or augmentation that are provided
by stylesheets) — thereby leaving it to be “clean”, “logical” and “generic”.

But Renear’s strongest contribution is in adding a dimension we have not
really attended to. By discriminating on a second axis (I have made it vertical)
between “indicative” and “imperative” (or “performative”), Renear isolates a
very useful axis that had gone pretty much unnoticed. (I believe his basic proposi-
tion, that the descriptive/procedural distinction has served to mask this dimen-
sion, to be essentially correct.) In my diagram we might notice, for example, that
notwithstanding the apparent advantages of generic markup, it is still evident
that there is a clear difference even between (say) the W3C Rec document type
(the DTD by which W3C drafts and recommendations are marked up), and (say)
TEI markup. In a sense both may be considered to be descriptive: but it still
seems significant that one presumes to describe something that already exists (TEI
documents usually purport to be faithful representations of texts already extant
in print or manuscript), whereas another (W3C Rec) describes something that
never exists apart from its tagging (or in products derivative of that tagging), to
be created and then maintained in that form.

While Renear himself is not altogether satisfied with the categories he pro-
poses,? it is evident that either or both “imperative” and “performative” can
provide the necessary distinction from the opposite term, “indicative”.

To reduce this to its essence, it appears markup can look “into the text”, or
“out to the application” (this would seem to be a very loose way of characteriz-
ing our old friend, the descriptive/procedural distinction); but it can also look for-
ward in time, to eventual processing, or it can serve, irrespective of application,

the dog: if the semantic expressiveness of DTDs were richer, the “logical” domain could be accordingly
more fully-featured. Models would be more directly tied to processing semantics — and we would not have
had the same chance to learn the capabilities and occasional advantage s of the looser coupling between
model and application that the logical domain implies.

23 Although imperative and performative moods are supposed to be distinct in the scheme Renear proposes,
in his treatment he is not quite able to clarify why the mood of a “renditional imperative” and a “logical
performative” (a bit of markup that makes something a title, say, by so labeling it) should be considered
to be different. | submit that the difference is one of agency. An imperative is spoken by one agent, to be
performed by another, whereas a performative is something that is done in the speaking of it. But, when
applied to markup languages, this in turn raises other questions: is such agency a property of the
language itself, or is it determined by the design of the architecture in which it functions? In linguistic
terms, the “pragmatics” of the situation are entirely different.

Spring 2001 | Markup Languages: Theory & Practice

157

158

Wendell Piez

to represent some state that pre-exists, for example in a document already extant.
While it might be tempting to call the latter kind of markup “descriptive”, this
requirement is in fact orthogonal to the requirement for application binding we
have been examining so far. Renear’s major contribution, by identifying a kind of
markup in the logical domain, but the imperative or performative mood, is to
show that descriptive markup (in the traditional sense of the term) can in fact
look either back, or forward. In fact, many or most of the current initiatives in
XML languages are of exactly this forward-looking type. The markup serves
descriptively, but only to describe the text’s content with respect to a logical
model, designed to be amenable to some particular kind (or some range) of pro-
cessing. This is quite a different thing from using markup to describe some extant
artifact in the world. A confusion over the stresses between the two views is at
the heart of many design problems and infelicities.

We can adopt this point of view in developing our map of markup lan-
guages: one way to name this new axis is between “prospective” and “retrospec-
tive” markup languages. A retrospective markup language is one that seeks to
represent something already existing; whereas a prospective markup language is
one that seeks to identify a document’s constituent parts as a preliminary to fur-
ther processing. Prospective markup, that is, may be “procedural” in the sense
that SVG or XSLFO is. Alternatively, it may seek to claim all the advantages of
generic markup (scalability, strict validation, content re-use etc. etc.) without hav-
ing to be bound to describe anything apart from itself.

In my map (Figure 5), this could be distinguished by a vertical axis, “pro-
spective” corresponding to Renear’s imperative/performative mood, “retrospec-
tive” corresponding to Renear’s indicative; but it is interesting to see that when
we begin to place actual markup languages into this conceptual space, that there
are blank spots. In particular, there are two positions left empty in a possible grid
of six (we can conceive of Renear’s arrangement with a new domain to the left,
“exploratory/mimetic”, next to logical and renditional to the right). For one, it
seems unlikely that we would have an application of markup that is both pro-
spective (Renear’s imperative), but exploratory, having no use for validation or
the kind of binding to (even implicit) semantics that validation implies: if we are
creating a new format for a new application, what does validation lose us? It
could be that markup instances that are purely ad hoc files for momentary pro-
cessing, would fall into this category.?*

Equally unlikely would be a conjunction between retrospective and proce-
dural (or application-specific). This would correspond to Renear’s category of
“indicative renditional”, which he also remarks would seem to make little sense.

24 | actually think there is an important role to be played by such little languages, exploring not artifacts or
texts, so much as processing opportunities.

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

Evidently, procedural and retrospective markup serve requirements that are in
conflict. We can either describe the world as we find it (with retrospective
markup) or we can dictate in what way we need our data to be handled (with
procedural markup). The fact that traditionally, generic markup systems (or at
any rate, those that had retrospective designs) have sought to mediate this exact
conflict, does not make it any easier to do so. The more we need our application
to serve retrospectively, the less we can expect to find thorough, detailed and
strict validation regimens of much help.2s

That is, although we can distinguish a vertical axis that indicates a markup
application’s orientation in time (forward- or backward-looking), it is clear that
this axis is not completely orthogonal to the spectrum of loose-to-strict validation
that I began by tracing. It is likely that a prospective application will find strict
validation both useful, and not particularly burdensome. To the extent that an
application is retrospective (such as might be the case with a markup language
written to support conversion of a legacy data set, or a scholarly project in tex-
tual editing), however, it may prefer any testing to be loose. In graphing it out,
therefore, this axis appears on a diagonal.

Generic markup as a form of rhetoric

Prospective, procedural languages clearly have a place: it would be hard to
argue against the utility of standard XML vocabularies such as XSLFO and
SVG.2 At the other extreme, retrospective, exploratory applications of markup
would appear to be very fruitful as approaches to certain intellectual problems
(although until it became practical to develop markup applications without
DTDs, this kind of application of technology was severely hampered by a lack of
a standard toolset), particularly problems that have directly to do with questions
of how we represent non-digital phenomena by digital, processable means. But
what is most interesting here is the broad grey zone between these extremes, a
zone occupied by applications of markup that have a need for strict validation as
an instrument in workflow and processing architectures, but that are not exclu-
sively bound to any particular type of processing or application, as would be
implied by a procedural language. This is the zone of “generic”, loosely called
“descriptive” languages such as TEI, W3C Rec ML, or for that matter, the lan-
guage used to mark up this paper.

25 Nevertheless, applications like this are conceivable, and have even been executed in part. For example, if
an attribute syntax were to be adopted on top of a generic markup like TEI, especially if the attributes
worked to prescribe formatting (embedding, as it were, a style mapping into the generic instance), it might
achieve something like this.

26 In fact, as for example in the “XSL Formatting Objects Considered Harmful” argument [Lie 1999], when
these languages come in for criticism it is precisely because they have certain kinds of utility (though
perhaps not others).

Spring 2001 | Markup Languages: Theory & Practice

159

160

Wendell Piez

“loose” .. validation ...
®SLT Schematron oTD
Proleptic
W3 Rec
Exploratory Extreme
Mimetic

[DucBaokl
ProfML |
T .c-ulwmiun'
TEI I formats |
Retrospective

“Indicative”, “receptive” Metaleptic

Figure 5 | Markup languages mapped on two axes

The horizontal axis represents the level of validation appropriate or called for, and thus the spec-
ificity of machine (behavioral) semantics. Requirements for a tag set to be prospective (provide
for future use) or retrospective (describe a given artifact physically or “logically”) align along the
diagonal lower-left to upper-right.

Most discussions of “semantic” in the context of automated text (or “knowl-
edge”) processing end up having to distinguish between two meanings. There is
the realm of human semantics, largely if not principally representative, our
“meanings” when we express ourselves in language or by any other means. Then
there are machine semantics, the sorts of behavior, events, products or controlled
processes that can be expressed through a machine — and which are the normal
objective of workflow-oriented systems. If you like, you can consider this a spec-
trum between word (on the “human” side) and act (the machine behavior). (Tim
Berners-Lee, for example, in his discussion of the “semantic web”, has openly
affirmed that he is concerned only with the second kind.)

The world of “content” (text) that is encoded generically is a fascinating one,
in which these two competing notions of the semantic discover themselves head-
to-head. In this world, markup simultaneously links people and processes in dif-
ferent roles, and serves as a conduit or channel for “meanings” that have the
interesting property of skipping or passing through stages in a process (a “supply
chain”) that can go directly from creator and producer, to audience or consumer.
That is, markup provides a kind of framework or packaging by which words

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

(written texts or representative codes) can be passed without consideration of
what they “say”. As a kind of interchangeable part, as long as the package or
framework is correct, the meaning or substance of the “text itself” (what we call
the “content”) can be more or less completely opaque to participants along the
chain. The framing or wrapping provides the text with sufficient information
(about its nature, about its internal structures and relations) that it can be passed
and processed without constant rediscovery and reinvention. This wrapping or
packaging takes the form of markup; and of course, relative to the processes, the
markup is meaningful — yet its meaning is local and provisional. Accordingly,
these can be staged systems in which interpretation happens in an articulated
way. For example, authors decide some things, bibliographers some things, cata-
logers some things, layout designers others. In such a system, a degree of “seman-
tic opacity” is a feature (cf. [Cover 1998]), allowing us to provide appropriate
processing based on some kind of “intention” as a tag set presents that, but
always leaving it up to us to decide finally what that means. The masking or
withholding of any details or specifications for processing, that is, behind “ele-
ment type names” or “generic identifiers”, is part of what makes such a system
work: by not insisting on a binding to any one thing, the mechanism of element
typing is free to support an open-ended range of things. Note that exactly insofar
as machine semantics is devalued (or rather, postponed or layered) in such a sys-
tem, the expression of human semantics becomes very important: generic markup
languages become worse than useless if their tag names are cryptic or if they are
not well documented. But when a markup language is designed well, it can be
used to frame and drive a process in which different participants can provide
their added value, each without having to get involved in exchanges of no direct
concern to him- or herself.

In these respects, a generic language is able to be, or to pretend to be,
exactly, descriptive or representational — meaning that, pragmatically, it has
some kind of implied human semantics, without being bound to any, or any par-
ticular, processing (machine) semantics. That is, we take the tags to “mean”
something — but what they actually mean, in the event a file is ever processed,
may be different from (albeit in some way implied by) the meanings of the tags.
In other words, there is a slippage between what a descriptive tag set purports to
mean, and what it actually “means” (does) in the event.”” This slippage is the

27 Robin Cover argues [Cover 1998] that this makes it important to provide XML with a means of strong
semantic specification, which in and of itself it does not have (since XML syntax, nor DTD-based content
modeling, are incapable of providing it). In Cover’s terms, this is XML'’s lack of “semantic transparency”.
And for procedural applications of the syntax, this is certainly a critical issue. It can be addressed in
several different ways, for example by providing some kind of formal ontology; by merely presenting a
notation for some other data model; or by passing the problem into a syntax carried in attributes, such as
CSS, XPath or SVG path syntax. Yet for descriptive or generic applications, XML’s semantic opacity is
actually be a feature of the technology. It’s where things can get slippery between layers.

Spring 2001 | Markup Languages: Theory & Practice

161

162

Wendell Piez

source of the power of descriptive languages, their famous “indirection”: mean-
ing nothing directly, they can be taken to mean a great range of things if we only
bind their evident and ostensible meanings (that in practice do nothing but struc-
ture and disambiguate between types) to behaviors. To tag a data element as a
title, say, may mean nothing more than “whatever you do with titles, do it
with this thing”.

So generic markup involves us in a strange paradox. It foregoes the capabil-
ity of controlling behavioral “machine” semantics directly, but wins, in return, a
greater pliability and adaptability in its applications for human expression. This
kind of middle-ground markup would be systematic enough to be receptive to
automation, but would not necessarily be automated “out of the box”. Another
way of describing this kind of markup application, as opposed to more strongly
typed and validated kinds, is that this is the kind of system in which a stylesheet
writer has something significant and important to do. Stylesheets are a natural
way to get from an abstract model, into an application. But they might require,
as stylesheet writers know, some addition of information, interpretation and
restructuring, as well as mere mapping. Stylesheets are also where a great deal of
creative work can come into play.

If this variety of markup language is not really a set of instructions, but a
complex representation (on which a later process may be expected to act), the
proper discipline for regarding it would seem therefore to be, not formal lan-
guages (that have the virtue of being readily bound to processing), but something
closer to linguistics and rhetoric.?® This is the realm where we experience slip-
pages — whether inadvertent, or “intentional” — between actual and potential
meanings.?’

In effect, markup languages are far more than languages for automated pro-
cessing: they are a complex type of rhetoric working in several directions at once,
often in hidden ways. Inasmuch as markup systems then may begin to resemble
other textual systems (such as literary canons or conventional genres), it is rea-
sonable to turn to rhetorical or literary critical theory for explanations, or at least

28 Lately, Michael Sperberg-McQueen, Claus Huitfeld and Allen Renear have sought to formalize markup
languages’ (including generic markup languages’) handling of meaning by saying markup “licenses certain
inferences” about a text. (See [Sperberg-McQueen 2000].) In the notion of inference — and the evasion
of the issue of how an inference can be constrained or defined (since isn’t an inference precisely that kind
of communication that can’t be constrained or defined?) — they effectively elide this transition between
formal information theory, and rhetoric (which is enamored of formalisms, but resists being
comprehended by them). To “license an inference” is, in effect, to say something without saying it. Is this
logic, or rhetoric?

29 To examine this in the context of Renear’s categories: one difference between imperative and indicative,
or between a “performative” and an indicative (the axis Renear describes as “mood: whether markup
describes something, or requests processing” [Renear 2000]), is that an indicative refers back to the
past (or disinterestedly to the present or future). It is the projection or implication of some reality apart
from the markup (the separation of format from content!), whether this is a feature of some kind as
documented, a perception, or an imaginative projection, which competes with processing objectives, that
opens up the important area of slippage.

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

higher-level characterizations of them. I am not going to begin to plumb the
depths of this subject here. Given both the complexities of real-world workflows,
and the fact that many of the agents are human beings only as mediated through
their machine proxies, it is difficult to say who is saying what to whom through
(and in) a markup language or markup language application. Then too, the ways
in which messages and meanings trace through an electronic text system, is going
to be highly, sensitively dependent on the unique particulars of media, technology
and culture at work in a particular case. One thing that does need to be observed
here, however, is that in markup, we have not just a linguistic universe (or set of
interlocking linguistic universes) but also a kind of “rhetoric about rhetoric”.
That is, markup languages don’t simply describe “the world” — they describe
other texts (that describe the world).

As it happens, critical theory has had occasion to consider such complex
types of figuration, representation or meaning. I am going to draw on the work
of scholars who have studied intertextual referentiality®® (where this type of phe-
nomenon is especially pronounced), to distinguish between the tropes metalepsis
and prolepsis. These are distinguished from the usual run of rhetorical figures
such as metaphor, metonymy and so forth, because unlike others (which are
occasions of figurative representation), these are tropes about tropes. It is not
“something in the world” that is represented in a metalepsis (or its less common
complement, prolepsis), but rather some other act of figuration.*!

Proleptic markup

Of prolepsis and metalepsis, the first is possibly simpler to grasp quickly:
Prolepsis is a rhetorical trope or gesture’? in which an expression or figure of
speech takes its meaning from something that is to appear later. Dramatic irony
(where a character in a play, for example, says something that carries an extra
meaning to an audience that knows or guesses what is to happen in the drama),

30 In particular, on the work of the poet and literary scholar John Hollander [Hollander 1981] and his
colleague, the critic Harold Bloom [Bloom 1982].

31 Hollander (and with him, Bloom) claims that this type of thinking is to engage not just in the usual kind of
“synchronic”, but a “diachronic” rhetoric. That is, ordinary treatments of rhetoric pay attention to the use
of figurative language as if all the signifiers were related outside of time. (This would seem to be a
Platonistic view of text, with all meanings always available sub specie aeternitatis.) But it is possible, not
only to consider how language or signification interacts as a kind of “random access” system, but also to
think of how meanings work over time and across it, how they shift and change in relation directly to one
another, how they recapitulate or anticipate. This kind of thinking is extremely helpful as soon as we start
looking at layered systems and complex, dynamic information interchange — but it involves us, in effect,
in representing the flow of information, the stages of its passage.

32 The extremely useful word “trope” may call for some explanation. From the Greek for “turn”, itis a
traditional word to designate a figure of speech or signification (whether spoken, written, or by some other
means), or any occasion when something is expressed by saying something somewhat different.
Metaphor is a trope, though its cousin simile (a comparison using “like” or “as”), even when poetical, is
only a trope in a loose sense. Other tropes include metonymy, synecdoche, irony, etc. etc.

Spring 2001 | Markup Languages: Theory & Practice

163

164

Wendell Piez

or literary or dramatic foreshadowing, is prolepsis; but so is any “casting for-
ward” or anticipation, such as an argument one might make in a conference
paper in anticipation of counter-arguments. Consequently, the full meaning of a
prolepsis is impossible to know without taking account of its relation to the
future. Whether what is forecast does, in fact, come to pass in the way forecast,
opens prolepsis up to capabilities for irony. On the other hand, sometimes saying
something, makes it so: so prolepsis often has the capacity for a kind of poetic
“fiat” or self-fulfilling prophecy.

Any prospective tagging might be called “proleptic” because the meaning of
the tagging is intimately connected with our expectations for processing it. Even
when such markup is generic, we call something a head or a section because we
intend to treat it as a head or a section in processing. This is Renear’s “performa-
tive” markup: the section becomes a section through the act of naming it so.

But it might also be that the term proleptic would be useful to distinguish
exactly that type of prospective (performative) markup that works generically,
such as DocBook, the W3C “XML Rec” markup, or even certain kinds of
XHTML (probably “XHTML Strict”), as opposed to prospective markup that is
merely, in effect, an application binding, such as SVG or certain other kinds of
XHTML (such as a DHTML application, heavily laden with script and tuned to
a particular browser). Admittedly, this too may be a spectrum rather than a sim-
ple either/or classification; also, it should be noticed how a markup language may
actually “grow into” an application binding — or conversely, how an application
binding or API may grow around a markup language.’* Nevertheless, there will
be occasions when, although we have expectations for processing our data, they
may not be specific or limited expectations. In other words, we want a method (a
generic language) that affords us that slippage between specification and process-
ing. The word “proleptic” seems to allow for this: as a trope, the meaning of a
prolepsis has to be seen as conditioned by the possibility, at least, that things
don’t quite turn out as expected. Especially when marking up new texts (or com-
posing texts in a new language), this is a very powerful way to approach the
design and practice of markup: an artful combination of specification and slip-
page is what enables most of the promises of generic markup to be realized.’*
When we design, we may want to know in detail (or at least in principle) the
application requirements of a markup language; we may want to be prospective
if not actually procedural. Nonetheless, we always want to keep our eyes also on
the bigger picture, since a careful restraint devoted to modeling our information
“logically” (that is, in some sense, descriptively, if only to be descriptive of an

33 So, for example, CSS has grown up as an API (in effect, albeit “declarative”) around HTML, therefore
pulling HTML/CSS further into the procedural than plain “generic” HTML on its own. As an API to a display
engine, of course, CSS is useful to more than HTML.

34 Again, see [Quin 1996].

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction 165

abstract model) rather than in the language actually of an application, pays off in
the long run in data independence, reuse, longevity, and so on.

In this kind of endeavor, validation routines are going to be very useful. We
will build our workflows around them. More interestingly, possibly, our means of
specifying validation, such as DTDs, will be useful as specifications for tools,
many of which can be automatically fitted to the task. This is an application of a
gauge (the DTD), which is used to check conformity to an external measure, as a
jig — a device or tool fitting, that allows us to make the component to measure
the first time. In a sufficiently evolved production system, we may never even
have documents that are “invalid” in the XML sense, and we may have needs
and uses for all kinds of validation besides simple structural element type check-
ing. But we may do all of this without any particular or specific expectations for
processing.

Metaleptic markup

So proleptic markup is that type of generic markup that looks forward.
What of generic markup that looks at what is past? That is, that tries seriously to
register, in some disinterested and objective way, features and organizations of
information already out there? In some ways it would seem unnecessary to have
to submit a descriptive markup convention to strict validation, with all that
implies (we remember Birnbaum’s argument [Birnbaum 1998]). Nevertheless,
whatever processing we expect to do over data sets, on however large a scale,
will demand some kind of validation at some point, and there are many reasons,
both intellectual and practical,* to try to design a generic language that also tries
to capture some “truth” (or at least theory) about the world. Having formalized
our theories in abstract models, we can then test them by running the very same
validation routines that we apply to encodings that have been specifically
designed for processing, not for representation. In the end, validation is not only
a testing instrument in a workflow: it is an investigatory instrument in its own
right. DTDs are representations of texts. So we look backward, in an interest-
ingly formalistic way. But we also get the benefits of looking forward.

This type of markup tries to be retrospective (and in this presumes to
describe the data set), but nevertheless relies on, and benefits from, strong or
“strict” validation regimens. Such tag sets would include TEI3¢ or any tag set
developed for data conversion or retrospective document conversion which seeks

35 Practical reasons: converting large amounts of data from a legacy format. A well-designed model that
looks to how that data is formatted, can preserve information through conversion to an open format like
XML, and ease the conversion process. Intellectual reasons: develop a theory about a (body of) text;
formalize that theory; demonstrate its utility.

36 In most applications. TEI can also be used in a proleptic way, for example when it is used to drive a web
site of original documentary materials (a task for which a TEI subset is actually fairly well suited). Notice
that it is not a markup language (a tag set) that is per se proleptic or metaleptic, but an application of it.
Some tag sets can be used in all kinds of ways: HTML certainly has been.

Spring 2001 | Markup Languages: Theory & Practice

166

Wendell Piez

at once to be both descriptive and generic. Markup systems like this are evidently
descriptive after a fashion; but it is also clear that their prospective applications,
be those presentational, analytical or what have you, are a big part of their con-
ception.

In contrast to prolepsis, metalepsis is the rhetorical trope in which the mean-
ing of an expression is in direct reference to what has already happened in the
past.3” Of course, this is in some sense true of all rhetoric, since all rhetoric is
situated, in some way, in a moment with a history (and inasmuch as this is the
case, all rhetoric is metalepsis, successful or failed); but in a narrower sense,
metalepsis is what occurs when reference is made to anotherfigure that has
already appeared (some event of meaning or figuration that has already taken
place), but in such a way that the meaning of the earlier figure is itself changed
by the appearance of the metalepsis.?*

What then would be a metaleptic markup language? Keep in mind, to begin
with, that document markup as rhetoric is necessarily complex; there are various
levels of expression here. A tag set describes a data set, or it describes a theory
about the data set; when it looks back, what does it see? Might it not sometimes
have reference to one or more earlier systems of description (earlier theories?),
including implicit traditions? A consideration of markup systems actually in use
(Pve mentioned academic projects including TEIL, as well as transition or conver-
sion formats being used in industry), suggests that such a reference is not, in fact,
uncommon.*® In general, metaleptic tagging will act retrospectively, and may even

37 John Hollander, considering metalepsis as a “diachronic figure”, describes it as related to allusion but
entailing a deliberate relation between before and after. “We deal with diachronic trope all the time, and
yet we have no name for it as a class. An echo of the kind we have been considering may occur in a figure
in a poem, and it may echo the language of a figure in a previous one. But the echoing itself makes a
figure, and the interpretive or revisionary power which raises the echo even louder than the original voice
is that of a trope of diachrony” [Hollander 1981]. As a variety of allusion with “interpretive and revisionary
power”, metalepsis is not any ordinary act of signification or representation: it is a representation with
reference to another (previous) representation. Once he has alerted us to this possibility, Hollander is
able to show that gestures of transumption (the Latin “transumption”, with its morphological variant the
verb “transume”, has long been a variant of the technical Greek “metalepsis”) are in fact not uncommon
in literary language . “Save for dramatic irony, with its audience’s — or reader’s — proleptic sense of an
outcome of which the dramatic speaker is unaware, and which engenders an interpretation more powerful
than the raw intended meaning of the speaker himself, only transumption seems to involve a temporal
sequence” [Hollander 1981]. His fascinating book The Figure of Echo contains a thorough examination of
the dimensions and history of this category in critical theory. Nor is this conception, concludes Hollander,
of application limited to poetic language. “Not only particularly preexistent metaphors, but formal
structures — and M.H. Abrams and, more recently, Paul Fry, have shown us authoritatively the intricate
turnings of the transumption of a previously public form in the history of the ode — are recreated
metaleptically. So are genres” [Hollander 1981]. And so, | submit, are markup languages.

38 The Christian New Testament is metaleptic with respect to the Old Testament. Virgil is metaleptic with
respect to Homer, Dante with respect to Virgil. Strong poetry is almost inevitably metaleptic, since poets,
it seems, cannot help but echo and try again their predecessors, but in such a way that they commandeer
the older works and set them to later purposes. Blake and Shelley succeeded at this so thoroughly with
Milton, that we cannot even read Milton any more (if we do at all) without meeting up, in some way, with
Shelley’s Romantic heresy. This also happens in musical traditions: Brahms is metaleptic (or attempts to
be) with respect to Beethoven, and so forth.

39 | suppose any extension of a standard or off-the-shelf markup language might be metaleptic in a simple

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

pretend, and attempt, to be thoroughly descriptive and retrospective in its rela-
tion to already captured information (figures already spoken); but it relies on
strict validation. This betrays its true nature: its design and application is really
done for purposes of future uses of the data (new meanings), not merely to
“describe” in the more limited senses of that term. It is retrospective tagging for
prospective purposes: thus, it works by saying something about the past (or
about the presumed past), but in order to create new meaning out of it.

Typically, it does this by positing a model of the text and then asserting,
implicitly or explicitly, that this model is sufficient for all practical (if not conceiv-
able) descriptions or applications of the text. And in well-designed, mature sys-
tems (by which I mean ones which have clarified the way they actually work and
are not confusing either their rationales or their design with those of other
markup applications), metaleptic languages do in fact function very nicely as gen-
erally-accurate descriptions — though it should be added, that when they succeed
in this way, it is typically because they determine 7ot to try and describe every-
thing.

Just like any other future-bound processing, this kind of markup will be able
to take advantage of strict, go/no-go validation. Because this kind of tagging
often originates as a description of a given artifact (a known text), it is easy to
identify it with true descriptive markup. But as I’ve said, that is a very rare thing
(unheard of in commercial or industrial applications): the goal of describing a
pre-existing object must generally yield, at some point, to the more practical need
to constrain and process the information set. Hence most markup languages that
go by the name “descriptive” are only so up to a point — they are in fact meta-
leptic.** A metaleptic markup language (or rather its designers and advocates,
perhaps its users) may be entirely innocent of any perceptions of stress between
extant documents, and abstract models — fundamentally, the stress over which
many struggles over validation will take place. Absent any consciousness of such
a stress, a metaleptic design may take, or propose, its model or theory of the text
as a kind of reality, thus claiming the title “descriptive”. But we can know it for
what it is when we see it being validated strictly, and when we also hear, in addi-
tion to its claim that it works by description, that it expects all the benefits down-
stream of validation, in the data set’s readiness for further processing (be that
publication of electronic or print editions, providing database access, or what
have you).

way. But more common, and more complex, are cases where the references are merely implicit, if
sometimes obvious.

40 In fact, the process of formal document analysis as it is practiced in the markup industry, can involve a
complex interplay between an actual descriptive exercise, as a way of driving work and exploring the
problem domain, while ultimately keeping focus on requirements for future processing.

Spring 2001 | Markup Languages: Theory & Practice

167

168

Wendell Piez

So far so good; the dark side of metalepsis is, possibly, when it denies its own
complex and layered nature. An act of transumption (a synonym for “metalep-
sis”) changes, transfigures, that which it transumes (in this case, “describes™).*!
To pretend otherwise, it would seem — to pretend, for example, that our repre-
sentations are in all respects (or even all important respects) identical to what
they represent — would only have the effect of setting ourselves up for disap-
pointment. In the worst case, we may completely fail to determine our actual
needs and fit our design to them: stuck on the horns of this dilemma, we may end
up with neither an adequate representation of our source text (however we define
that), nor data that is well suited for automated processing.

More commonly, rather than being purely descriptive/exploratory, or purely
proleptic, applications adopt a metaleptic design strategy because they need to
meet requirements on two sides, past and future. In time, if they are lucky, they
grow into a consciousness of their ambiguous status; but the actual rationales,
expectations, and design of these projects are often complex and intermixed.
Sometimes project participants themselves have not exactly clarified what their
main interest is; often they are working with several conflicting rationales or
requirements.

Yet in general, the emergence of this type of markup is of great importance
because it has led us more quickly and readily to understand the efficiencies,
power and scalability of layered markup systems: just like proleptic markup
(which is generic without being retrospective), metaleptic tagging is very much at
home in such a system of at least two tiers, possibly because it itself has two
faces, looking in and looking out.*> And when they are well designed (which not
coincidentally, often means intentionally designed) and appropriately deployed,
such a markup language can be fascinating in its own way, quite differently from
either of the other two forms of markup that are prevalent (leaving aside explora-
tory markup as more rare than it should be, we also see generic proleptic
markup, and procedural applications). It has its own kind of art. It does not try
merely to transcribe, as purely descriptive, exploratory tagging would (though as
scholars know, “merely transcribe” is an impossibility and an oxymoron), nor
merely to function in future systems, like prospective markup (spectacular though

41 In a metaleptic markup language, there is a missing term standing between the language itself, and the
text, the presumed “content” that completes (and is completed by) the markup: that term is the theory of
the text, the model, that the language formalizes. (Here | am concurring with Paul Caton, [Caton 2000].) It
is the movement from one term to the next (here, from text to theory, theory to model, model to
application) that makes for the rhetorical complexity of such a language, sometimes most complex when it
aspires to be most “transparent” — and that may help make applications of these language s suitable for
particularly interesting processing, as being particularly “slippery”.

42 This is of course the famous separation of format from content. Two tiers would be the repository and
presentation layers (think of a TEI text and its HTML rendition); this also maps over to the model /view/
controller paradigm, with “descriptive” or “generic”instance as model, rendition version (say, HTML) as
view, and stylesheet or script as controller.

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

that might be). It aspires to both, by seeking to balance between them. An effec-
tive markup language will work by establishing a self-contained, internally con-
sistent and clear set of categories perfectly sufficient for handling the data set to
which it will be applied, within the range of applications for which it is due. But
this ideal is impossible for a truly descriptive language to achieve, since the world
is not a closed, finite set of phenomena that is liable to such treatment.** Metalep-
tic markup gives us the next best thing: it invents its own imagined world, pro-
posing earnestly or ironically that this serves both sides, both accounting for
external reality as it is, and creating it as it needs to be.

TEIL incidentally, has occasionally been represented as a true retrospective
tag set, yet is torn about the issue. It aspires to provide certain functionalities
along with transcription, such as eased production costs for print or online edi-
tions, or eased repurposing across different applications, that can only be guaran-
teed through strict validation. Up until recently (when XML has made processing
without a DTD more practical), validation has been a particularly all-or-nothing
proposition. New (and newly accessible) tools and approaches supporting
“loose” validation may now seem more of an option than they have hitherto
(especially to strapped academic programs). Nonetheless, TEI cannot help but
continue to be powerfully metaleptic: pretending to be simple, naive, retrospec-
tive (and accordingly, extensible!), and simultaneously stressing validation as a
means of smoothing transitions of its texts to new media and new applications —
a prospective gesture — it ends up “falling into” metalepsis despite itself.**

Finally, it may be worth observing how architectures supporting metaleptic
languages or applications will differ from those for proleptic languages. For one
thing, we will be able to tell the difference when we look at a project’s regard for,
and use for, validation mechanisms. For a metaleptic system, validation will need
to be strict to the extent that future processing is anticipated. On the other hand,
since there is at least a presumed interest in the prior or “original” nature of the
textual content’s own structures, features or organizations — however these are
conceived — it may be at times that the best solution to a misfit between docu-
ment and formal model is to change and adapt the model (and accordingly, the
system) rather than forcing the document. As in pure exploratory applications,
markup is designed first, formalized after, whereas in a proleptic system, the
model or schema will come prior to the markup. This difference in emphasis may

43 This observation has often been made informally, in a variety of ways. “Selection is easier than synthesis,
but the world is not finite”, says Brian Reid [Reid 1998].

44 This tension can be seen to play out exactly in the role validation is expected to play in TEI projects. On
the one hand, the tag set is provided with an apparatus to support extensibility. This is the promise of
descriptive markup: that no text should have to be forced to fit. On the other, validation is considered
indispensable, not only for usual quality-assurance reasons, but also because in it there is an assurance
(for example) that the rigors of the teiHeader are observed, or that off-the-shelf (or nearly off-the-shelf)
stylesheets be able to be used — or that interchangeability be achieved (a prospective requirement, per-
turbed by local extensions). It is, after all, the Text Encoding Initiative for Information Interchange.

Spring 2001 | Markup Languages: Theory & Practice

169

170

Wendell Piez

make for different toolsets, to an extent. Also, we can expect of metaleptic sys-
tems, in particular, that the natural stresses between requirements for description
(sometimes in the guise of backwards-compatibility) and for interchange, will be
at their greatest: balance will only be achievable if we keep a realistic view of
what we intend to achieve and how we intend to do it. But when metaleptic sys-
tems are well designed, the rewards, both in our mastery of complex bodies of
information, and in our understanding of them, will be great as well.

| conclusions

e “Descriptive” may not be the best word. It means too many things. Even the
procedural languages are descriptive: they describe a binding, API, or object
model. The differences are in the closeness of the binding and the extent to
which an abstract syntax allows us to validate without binding, hence letting
us design a language at a higher level of abstraction (and get capabilities of
reuse and refitting thereby). Generic is a somewhat more useful term: these are
languages that can be strictly validated, but that are only loosely bound to
processing. At the far end, markup that isn’t validated at all, if it is retrospec-
tive, may be said to be descriptive, insofar as it describes some external object
(and is therefore directly representational). But historically, no standards have
existed to support markup systems of this kind. XML may help stimulate
more of this work.

¢ Watch out for clashing requirements. Prospective (“performative”) markup
can be generic, and generic markup may seek to be either prospective (prolep-
tic) or retrospective (metaleptic), or both together. But the more we try to
“describe”, the more difficult we will find it to validate (in the broadest senses
of that term). We should be careful to distinguish the requirements presumably
served by our design strategies. Academic projects with a commitment and
interest in description of something external (say, a literary or manuscript text)
may have a particularly difficult time with this — for example, when an
exploratory design clashes with a requirement for interchange. The “descrip-
tive vs. procedural” distinction can, if we are not careful, muddy the waters
here even further.

e New approaches to design: bottom-up. Loose validation with Draconian error-
handling at the syntactic level (e.g. XML well-formedness) — even if it
involves no “validation” at all in the formal XML sense — should open up
new possibilities for design strategies and methods, as well as for new applica-
tions of markup, including exploratory modes of markup such as I have
described. Up to this point the design process for a document model has usu-
ally been driven by a top-down analysis, and centered on DTDs. As long as
DTDs provide a useful means for testing for the kinds of interchange and

Markup Languages: Theory & Practice | Vol 3 No 2

Beyond the “descriptive vs. procedural” distinction

downstream processing that have been prominent requirements, this will con-
tinue to be appropriate. But if and as we design systems and markup lan-
guages with other aims — such as, for example, an exploratory application
rather than a “performative” or direct application of markup to processing —
other techniques and approaches may prove useful. What if designs were cen-
tered not on DTD validation, but on stylesheets and query sets that provided
meta-information (including validation checks) along with or in place of their
more usual kinds of transformations? What kind of markup applications
would be well served by such an approach?

* New complications include maintenance and oversight. Already approaches to
XML validation are proliferating. Which of the various approaches now being
tried, both strict and loose, come to be prevalent (and which approaches in
which environments and domains), is an issue I can’t address. But nothing is
either/or here: just because we use DTDs or XML Schema to validate one set
of features to requirements, does not mean we can’t use other means (style-
sheets or query sets, for example) for others.

If and as we do this, however, we should be careful to keep clear what we
are doing where, and why. It could easily become a problem if the same set of
constraints on a document set, or type, comes to be validated through more
than one tool: this would introduce new problems of parallel maintenance. (It
would be like having two rulers to measure things, but not being sure they
measured the same “inch”.) Yet different kinds of validation, and of tools to
do it with, might well be very usefully done at different stages of a document
lifecycle. (Such routines have been commonplace for years in any case.) When
systems become complex and validation routines overlap, it might be helpful
to have a “validation validation” regimen to appeal to. This is what, for
example, testing suites for tools provide — just as standardization has been
managed, again, even since the very first years of interchangeable parts.

Received 23 July 2001
Revised 5 October 2001
Accepted 8 October 2001

References

[Birnbaum 1997] Birnbaum, David J. 1997. “In
Defense of Invalid SGML”. At http://
clover.slavic.pitt.edu/ ~djb/
achallc97.html

[Birnbaum 1998] Birnbaum, David J. 1998. “The
Problem of Anomalous Data”. Markup
Technologies "98.

[Bloom 1982] Bloom, Harold. 1982. The
Breaking of the Vessels. The Wellek Library

lectures at the University of California, Davis.
Frank Lentricchia, Series Ed. Chicago:
University of Chicago Press.

[Caton 2000] Caton, Paul. 2000. “Markup’s
Current Imbalance”. Extreme Markup
Languages 2000.

[Cournane 1997] Cournane, Mavis. December
23, 1997. The Application of SGML/TEI to the
Processing of Complex Multilingual Historical

Spring 2001 | Markup Languages: Theory & Practice

171

Wendell Piez

Texts. Doctoral Dissertation, University
College, Cork. Cork, Ireland.

[Cover 1998] Cover, Robin. 1998. “XML and
Semantic Transparency”. At http://
www.xml.coverpages.org/
xmlAndSemantics.html.

[Cover 2001] Cover, Robin. 2001. “Conceptual
Modeling and Markup Languages”. At http://
xml.coverpages.org/
conceptualModeling.html.

[Sperberg-McQueen 1994] Sperberg-McQueen,
C.M., and Lou Burnard, eds. 1994. “A Gentle
Introduction to SGML”. In Guidelines for
Electronic Text Encoding and Interchange.
Repr. 1997. Chicago, Oxford: Text Encoding
Initiative. pp. 13-36. Available online at
http://www.uic.edu/orgs/tei/sgml/
teip3sg/

[Hollander 1981] Hollander, John. 1981. The
Figure of Echo. Berkeley, CA: University of
California Press.

[Hounshell 1984] Hounshell, David. 1984,
1985. From the American System to Mass
Production, 1800-1932. Baltimore: The Johns
Hopkins University Press.

[Lancashire 1995] Lanchashire, lan. 1995.
“Early Books, RET Encoding Guidelines, and
the Trouble with SGML”. At http://
www.ucalgary.ca/~scriptor/papers/
Tanc.html

[Lie 1999] Lie, H8kon W. 1999. “Formatting
Objects considered harmful”. At http://
www.myopera.com/people/howcome/1999/
foch.html.

Markup Languages: Theory & Practice | Vol 3 No 2

[McCarty 1999] McCarty, Willard. August 29,
1999. An “Analytical Onomasticon to the
Metamorphoses of Ovid”. On-line sampler. At
http://ilex.cc.kcl.ac.uk/wim/
onomasticon-sampler/.

[Quin 1996] Quin, Liam. November 1996.
“Suggestive Markup: Explicit Relationships in
Descriptive and Prescriptive DTDs”. SGML'96.
Graphic Communications Association.

[Reid 1998] Reid, Brian. 1998. Keynote address
to Markup Technologies '98.

[Renear 2000] Renear, Allen. 2000. The
Descriptive/Procedural Distinction is Flawed.
Extreme Markup Language s 2000. Reprinted
inMarkup Languages: Theory and Practice, 2,
no. 4 (Fall, 2000).

[Rockwell 2001] Rockwell, Geoffrey. February
20, 2001. Private e-mail to the author.

[Goldfarb 1990] Goldfarb, Charles F. 1990. The
SGML Handbook. Oxford: Clarendon Press.
Annex A. Adapted from Charles F. Goldfarb, “A
Generalized Approach to Document Markup”,
in SIGPLAN Notices, June 1981.

[Sperberg-McQueen 2000] Sperberg-McQueen,
C.M., Claus Huitfeldt, and Allen Renear.
“Meaning and Interpretation of Markup”.
Extreme Markup Languages 2000.

[XML 2000] Bray, Tim, Jean Paoli, C.M.
Sperberg-McQueen, and Eve Maler, eds. 6
October 2000. “Extensible Markup Language
(XML) 1.0 (Second Edition)”. W3C
Recommendation . At http://www.w3.0rg/
TR/2000/REC-xm1-20001006

