Schematron: validating XML using XSLT

Schematron Overview

excerpted from Leigh Dodds’ 2001 XSLT UK paper,
“Schematron: validating XML using XSLT”

Leigh Dodds, ingenta 1ltd, xmlhack.com

April 2001

Abstract

Schematron [Schematron] is a structural based validation language, defined by
Rick Jelliffe, as an alternative to existing grammar based approaches. Tree
patterns, defined as XPath expressions, are used to make assertions, and provide
user-centred reports about XML documents. Expressing validation rules using
patterns is often easier than defining the same rule using a content model. Tree
patterns are collected together to form a Schematron schema.

Schematron is a useful and accessible supplement to other schema languages.
The open-source XSLT implementation is based around a core framework which
is open for extension and customisation.

Overview

This paper provides an introduction to Schematron; an innovative XML validation
language developed by Rick Jelliffe. This innovation stems from selecting an
alternative approach to validation than existing schema languages: Schematron
uses a tree pattern based paradigm, rather than the regular grammars used in
DTDs and XML schemas. As an extensible, easy to use, open source tool
Schematron is an extremely useful addition to the XML developers toolkit.

The initial section of this paper conducts a brief overview of tree pattern
validation, and some of the advantages it has in comparison to a regular
grammar approach. This is followed by an outline of Schematron and the
intended uses which have guided its design. The Schematron language is then
discussed, covering all major elements in the language with examples of their

1of14

Schematron: validating XML using XSLT

usage. A trivial XML vocabulary is introduced for the purposes of generating
examples.

The later sections in this paper provides an overview of the open source XSLT
framework used to implement the Schematron language. The Schematron
conformance language for custom implementation is also introduced. The paper
completes with some suggestions of possible future extensions.

Introducing Tree Patterns as a Validation Mechanism

During the last few years a number of different XML schema languages have
appeared as suggested replacements for the ageing Document Type Definition
(DTD). The majority of these have taken the basic premise of recasting DTD
functionality in XML syntax with the addition, in some cases, of other features
such as data typing, inheritance, etc [XMLSchema]. The use of XML syntax
provides additional flexibility through leveraging existing tools for markup
manipulation, while the 'value added' features satisfy the requirements of
developers looking for closer integration with databases and object-oriented
languages.

Yet the fundamental approach adopted by these languages does not diverge
greatly from the DTD paradigm: the definition of schemas using regular
grammars. Less formally, schemas are constructed by defining parent-child and
sibling relationships [Jelliffe1999a]. For example in a DTD one might write:

<!ELEMENT wall EMPTY>
<!ELEMENT roof EMPTY>
<!ELEMENT house (wall+, roof)>

This defines three elements, wall, root, and house. The parent-child relationship
between house and wall elements is defined in the content model for house. A house
may have several walls.

The sibling relationship between wall and roof is derived from the same content
model, which defines them as legal sibling children of the house element.

However this means that DTDs, and similar derivatives, are unable to define (and
hence constrain) the other kinds of relationships that exist amongst markup
elements within a document. As the XPath specification [XPath] shows, there are
many possible kinds of relationship, known as 'axes'.

Example 1. Tree relationships (axes) defined by XPath

e child

e descendant

e parent

e ancestor

e following-sibling
e preceding-sibling

20f14

Schematron: validating XML using XSLT

e following

e preceding

e attribute
namespace

self
descendant-or-self
ancestor-or-self

While XML does include an ID/IDREF mechanism which allows for cross-
referencing between elements, and hence another form of relationships, it only
weakly binds those elements. There is no enforcement that an IDREF must point
to an ID on a particular element type, simply that is must point to an existing ID,
and further that all IDs must be unique.

Having highlighted the fact that the existing schema paradigm can only express
constraints among data items in terms of the child and sibling axes, it is natural
to consider whether an alternate paradigm might allow a schema author to
exploit these additional relationships to define additional types of constraint
amongst document elements. Tree patterns do just that, and XPath provides a
convenient syntax in which to express those patterns.

Validation using tree patterns is a two-step process:

e Firstly the candidate objects (in XPath terms, nodes) to be validated must be
identified. i.e. identify a context

e Secondly assertions must be made about those objects to test whether they
fulfill the required constraints.

Both the candidate object selection, and the assertions can be defined in terms of
XPath expressions. More formally, the nodes and arcs within a graph of data can
be traversed to both identify nodes, and then make assertions about the
relationships of those nodes to others within the same graph. Assertions are
therefore the mechanism for placing constraints on the relationships between
nodes in a graph (elements and attributes in an XML document).

For example, we may select all house nodes within a document using the
expression:

//house

And then assert that all houses have walls by confirming that the following pattern
selects one or more child nodes (within the context defined by the previous
selection):

child::wall

Regular grammars, as used in DTDs, can then be viewed as tree patterns where
the only available axis is the parent-child axis [Jelliffe1999e]. Full use of tree
pattern validation provides the maximum amount of freedom when modelling
constraints for a schema. This comes at very little cost: XPath is available in most

3of14

Schematron: validating XML using XSLT

XML environments. For example the following types of constraint are hard, or
impossible to express with other schema languages.

Example 2. Examples of 'difficult' constraints

e Where attribute X has a value, attribute Y is also required

e Where the parent of element A is element B, it must have an attribute Y,
otherwise an attribute Z

e The value of element P must be either "foo", "bar" or "baz"

Tree patterns are the schema paradigm underpinning Schematron as a validation

language.

There are reasons to believe that tree-pattern validation may be more suitable in

an environment where documents are constructed from elements in several
namespaces (often termed 'data islands'). As many consider that the future of
XML document interchange on the Internet will involve significant mixing of
vocabularies, a flexible approach may bring additional benefits.

Introducing Schematron
Background

Schematron [Schematron] is an XML schema language designed and
implemented by Rick Jelliffe at the Academia Sinica Computing Centre, Taiwan.
It combines powerful validation capabilities with a simple syntax and
implementation framework. Schematron is open source, and is (at the time of
writing) being migrated to SourceForge to better manage its development by a
rapidly growing community of users.

Schematron traces its ancestry [Jelliffe1999f] indirectly from SGML DTDs via
Assertion Grammars [Raggett], Groves and Property Sets [Arciniegas]. A recent
review of six current schema languages [Lee] supports this view, declaring
Schematron to be unique in both its approach and intent. Before discussing the

details of the Schematron language it is worth reviewing the design goals which

have been highlighted by its author.

Design Goals

There are several aims which Rick Jelliffe which believed were important during

the design and specification of Schematron [Schematron], [Jelliffe2001]:

e Promote natural language descriptions of validation failures, i.e. diagnose
as well as reject

e Reject the binary valid/invalid distinction which is inherent in other schema

languages
e Aim for a short learning curve by layering on existing tools (XPath and
XSLT)

4 of 14

Schematron: validating XML using XSLT

e Trivial to implement on top of XSLT

e Provide an architecture which lends itself to GUI development environments

e Support workflow by providing a system which understands the phases
through which a document passes in its lifecycle

Target Uses

Jelliffe has also suggested [Jelliffe2001] several target environments in which
Schematron is intended to add value:

e Document validation in software engineering, through the provision of
interlocking constraints

e Mining data graphs for academic research or information discovery.
Constraints may be viewed as hypotheses which are tested against the
available data

e Automatic creation of external markup through the detection of patterns in
data, and generation of links

e Use as a schema language for "hard" markup languages such as RDF.

e Aid accessibility of documents, by allowing usage constraints to be applied
to documents

How It Works

The implementation of Schematron derives from the observation that tree
pattern based validators can be trivially constructed usings XSLT stylesheets
[Jelliffe1999b], [Norton]. For example, a simple stylesheet that validates that
houses must have walls can be defined as follows:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">

<!-- select all houses -->
<xsl:template match="//house">
<!-- test whether it has any walls -->
<xsl:if test="not(wall)">
This house has no walls!
</xsl:if>
</xsl:template>

</xsl:stylesheet>

It should be obvious from the above that if a house does not have any walts, a
simple error message will be displayed to the user.

Schematron takes this a natural step further by defining a schema language
which, when transformed through a meta-stylesheet (i.e. a stylesheet which
generates other stylesheets), produces XSLT validators similar to the above. The
following diagram summarises this process.

Figure 1. Generating Validators Using Schematron

50f 14

Schematron: validating XML using XSLT

Editor'note: most Schematron users would call the first box
“schema.sch”.

Generating a Validating Stylesheet———

schematron. xslt

schema. xslt — (meta-stylesheet)

—» validator.xslt

document.xml —— validator.xslt ~— —— Validation Report

Validating a Document————

Schematron is therefore a simple layer above XPath and XSLT allowing it to
leverage existing tools, and benefit from a framework which is already familiar to
XSLT developers. Yet from a user perspective, the details of XSLT are hidden; the
end-user need only grapple with the XPath expressions used to define
constraints.

The following section outlines the Schematron assertion language which is used
to define Schematron schemas. The last section in the paper provides
information on the Schematron implementation (i.e. the metastylesheet) which
will be of interest to implementors seeking to customise Schematron for
particular needs.

The Schematron Assertion Language

This section introduces the Schematron assertion language which can be used to
generate XSLT validators using the Schematron implementation. All following
examples conform to a simple XML vocabulary introduced in the next section.

DTD For Example Content

The examples used within this section will refer to a fictional XML language for
describing building projects. While the examples could have been couched in
terms of an existing schema language, the intention is to provide a simple
vocabulary which does not assume any prior knowledge on behalf of the user. It
should be stressed that, while the examples themselves may be trivial this should
not be taken to indicate any specific limitation in Schematron, which is capable
of handling much more complex schemas.

6 of 14

Schematron: validating XML using XSLT

The following DTD defines the building project vocabulary:

Example 3. Simple XML language for illustrative purposes

<!ELEMENT wall EMPTY/>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

This schema allows us to describe a house consisting of a number of walls and a
roof. The roof may not be present if the house is still under construction.

A house has an address which consists of a street name, town and a postcode.

A house should have either a builder who is currently assigned to its
construction (and all builders must be certified), or an owner. Certification
numbers of builders, and telephone numbers of owners are also recorded for

roof EMPTY/>

street #PCDATA>

town #PCDATA>

postcode #PCDATA>

firstname #PCDATA>

lastname #PCDATA>

certification EMPTY>

certification number CDATA #REQUIRED>
telephone #PCDATA>

address (street, town, postcode)>

builder (firstname, lastname, certification)>
owner (firstname, lastname, telephone)>

house (wall+, roof?, address, (builder|owner)?>

adminstrative purposes.

A sample document instance conforming to this schema is:

Example 4. Sample document instance

<house>
<wall/>
<wall/>
<wall/>
<wall/>
<address>

<street>1 The High Street</street>
<town>New Town</town>
<postcode>NT1l</postcode>

</address>

<builder>

<firstname>Bob</firstname>
<lastname>Builder</lastname>
<certification number="123"/>

</builder>

</house>

Core Elements: Assert and Report

The basic building blocks of the schematron language are the assert and report

7 of 14

Schematron: validating XML using XSLT

elements. These define the constraints which collectively form the basis of a
Schematron schema. Constraints are assertions (boolean tests) that are made
about patterns in an XML document; these patterns and tests are defined using
XPath expressions.

The best illustration is a simple example:
Example 5. A simple assertion

<assert test="count(walls) = 4">This house does not have four walls</assert>

This demonstrates a simple assertion which counts the number of walts in the
current context. Recall that validation is a two step process of identification and
followed by assertion. The identification step generates the context in which
assertions are made. This is covered in the next section.

If there are not four walls then the assertion fails and a message, the content of
the assert element, is displayed to the user.

Asserts therefore operate in the conventional way: if the assertion evaluates to
false some action is taken. The report element works in the opposite manner. If
the test in a report element evaluates to true then action is taken.

While reports and asserts are effectively the inverse of one another, the intended
uses of the two elements are quite different. An assert is used to test whether a
document conforms to a particular schema, generating actions if deviations are
encountered. A report is used to highlight features of the underlying data:

Example 6. A simple report

<report test="not(roof)">This house does not have a roof</assert>

The distinction may seem subtle, especially when grapplying with a constraint
which may be expressed simpler in one way or the other. However Schematron
itself does not define the action which must be taken on a failed assert, or
successful report, this is implementation specific. The default behaviour is to
simply provide the user with the provided message. An implementation may
choose to handle these two cases differently.

It is worth noting that there is a trade-off to be made when defining tests on
these elements. In some cases a single complex XPath expression may accurately
capture the desired constraint. Yet it is closer to the 'spirit’' of Schematron's
design to use several smaller tests that collectively describe the same constraint.
Specific tests can more accurately provide feedback to a user, than a single
general test and associated message.

Assert and Report elements may contain a name element which has an optional
path attribute. This element will be substituted with the name of the current
element before a message is passed to the user. When supplied the path attribute

8 of 14

Schematron: validating XML using XSLT

should contain an XPath expression referencing an alternate element. This is
useful for giving additional feedback to the user about the specific element that
failing an assertion.

Schematron 1.5, released in January 2001, adds the ability to provide detailed
diagnostic information to users. Assert and report messages should be simple
declarative statements of what is, or should be. Diagnostics can include detailed
information that can be provided to the user as appropriate to the Schematron
implementation. Diagnostic information is grouped separately to constraints, and
is cross-referenced from a diagnostic attribute.

Example 7. Diagnostic Example
<assert test="count(walls) = 4" diagnostics="1">This house does not have four walls</assert>
<diagnostics>
<diagnostic id="1">

Its an odd house which has more or less than four walls! Consult your architect...
</diagnostic>

</diagnostics>

Writing Rules

As noted earlier, constraints must be applied within a context. The context for
constraints is defined by grouping them together to form rutes.

Example 8. Defining the context for assertions

<rule context="house">

<assert test="count(wall) = 4">A house should have four walls</assert>
<report test="not(roof)">This house does not have a roof</assert>
</rule>

The context attribute for a rule contains an XPath expression. This identifies the
candidate nodes to which constraints will be applied. The above example checks
that a house contains 4 wall child elements, and provides feedback to the user if it
is missing a roof.

Schematron 1.5 add a simple macro mechanism for rules which is useful when
combining constraints. To do this, a rule may be declared as 'abstract'. The
contents of this rule may be included by other rules as necessary. This is
achieved through the use of the extends element.

Example 9. Using abstract rules and the extends element

<rule abstract="true" id="nameChecks">
<assert test="firstname">A person must have a first name</assert>

9of 14

Schematron: validating XML using XSLT
<assert test="lastname">A person must have a last name</assert>
</rule>

<rule context="builder">
<extends rule="nameChecks"/>

<!-- builder specific constraints -->
</rule>
<rule context="owner">
<extends rule="nameChecks"/
<!-- owner specific constraints -->
</rule>
In the above example an abstract rule is defined, and assigned the id
"nameChecks". Two assertions are associated with this abstract rule: checking
that an element has a firstname and a lastname. These assertions are imported
by the other non-abstract rules and will be applied along with the other
constraints specific to that element. An abstract rule may contain assert and

report elements but it cannot have a context. Assertions from an abstract rule
obtain their context from the importing rule.

Producing Patterns and Schemas

The next most important element in a Schematron schema is pattern. Patterns
gather together a related set of rules. A particular schema may include several
patterns that logically group the constraints.

Example 10. Grouping rules using patterns

<pattern name="Adminstration Checks"
see="http://www.buildingprojects.org/admin/procedures.html">

<rule abstract="true" id="nameChecks">
<assert test="firstname">A person must have a first name</assert>
<assert test="lastname">A person must have a last name</assert>
</rule>

<rule context="builder">
<extends rules="nameChecks"/>

<!-- builder specific constraints -->
</rule>
<!-- additional rules -->

</pattern>

<pattern name="Other Constraints">
<!-- other rules -->

10 of 14

Schematron: validating XML using XSLT

</pattern>

A pattern should have a name and may refer to additional documentation using a
URL. A Schematron implementation can then furnish the user with a link to
supporting documentation.

Patterns defined within a schema will be applied sequentially (in lexical order).
Nodes in the input document are then matched against the contexts defined by
the rules contained within each pattern. If a node is found to match the context
of a particular rule, then the assertions which it contains will be applied. Within
a pattern a given node can only be matched against a single rule. Rules within
separate patterns may match the same node, but only the first match within a
pattern will be applied. An example of an incorrect schema is given below.

Example 11. Incorrect use of rule contexts

<pattern name="Adminstration Checks">

<!-- this rule WILL be matched -->
<rule context="builder">

<assert test="firstname">A person must have a first name</assert>
</rule>

<!-- this rule WILL NEVER be matched -->
<rule context="builder">
<assert test="lastname">A person must have a last name</assert>

</rule>
<!-- additional rules -->
</pattern>
<!-- rules in this pattern will be checked after the above -->

<pattern name="Other Constraints">
<!-- this rule WILL be matched -->
<rule context="builder">
<assert test="certification">A builder must be certified</assert>
</rule>

<!-- additional rules -->

</pattern>

Care should be taken when defining contexts to ensure that these circumstances
never arise.

The last step in defining a Schematron schema is to wrap everything up in a
schema element.

Example 12. Grouping patterns to create a schema

11 of 14

Schematron: validating XML using XSLT

<schema xmlns="http://www.ascc.net/xml/schematron">
<title>A Schematron Schema for Validating Building Project Documents</title>

<ns uri="http://www.buildingprojects.org/admin/" prefix="bld"/>

<pattern name="Adminstration Checks">
<l-- rules -->
</pattern>

<pattern name="Construction Checks">
<l-- rules -->
</pattern>

</schema>

There are several points to note about the above schema. Firstly it introduces the
namespace for Schematron documents, which is "http://www.ascc.net
/xml/schematron". Secondly a schema may have a title; this is recommended.

Conclusions

Schematron is unique amongst current schema languages in its divergence from
the regular grammar paradigm, and its user-centric approach.

Schematron is not meant as a replacement for other schema languages; it is not
expected to be easily mappable onto database schemas or programming
language constructs. It is a simple, easy to learn language that can perform
useful functions in addition to other tools in the XML developers toolkit.

It is also a tool with little overhead, both in terms of its learning curve and its
requirements. XSLT engines are regular components in any XML application

framework. Schematrons use of XPath and XSLT make it instantly familiar to

XML developers.

A significant advantage of Schematron is the ability to quickly produce schemas
that can be used to enforce house style rules and, more importantly, accessibility
guidelines without alteration to the schema to which a document conforms. An
XHTML document is still an XHTML document even if it does not meet the Web
Accessibility Initiative Guidelines [WAI]. These kind of constraints describe a
policy which is to be enforced on a document, and can thus be layered above
other schema languages. Indeed in many cases it may be impossible for other
languages to test these kinds of constraints.

Bibliography

[Arciniegas] Fabio Arciniegas. 19/04/2000. Groves Explained .

[Conformance] Rick Jelliffe. Schematron Conformance Language .

[Dodds] Leigh Dodds. 10/1/2001. Old Ghosts: XML Namespaces .

12 of 14

Schematron: validating XML using XSLT

[Holman] Ken Holman. Practical Transformations using XSLT and XPath .

[Jelliffe1999a] Rick Jelliffe. 1999. From Grammars To The Schematron .

[Jelliffe1999b] Rick Jelliffe. 24/01/1999. Using XSL as a Validation Language .

[Jelliffe1999c] Rick Jelliffe. 11/06/1999. How to Promote Organic Plurality on the
wWWww .

[Jelliffe1999d] Rick Jelliffe. 30/07/1999. Weak Validation .

[Jelliffe1999e¢] Rick Jelliffe. 01/08/1999. Axis Models & Path Models: Extending
DTDs with XPaths .

[Jelliffe1999f] Rick Jelliffe. 1999. Family Tree of Schema Languages for Markup
Languages .

[Jelliffe2000] Rick Jelliffe. 19/10/2000. Getting Information Into Markup: the Data

Model Behind the Schematron Assertion Language .

[Jelliffe2001] Rick Jelliffe. 31/1/2001. The Schematron Assertion Language 1.5 .

[Lee] . Comparative Analysis of Six XML Schema Languages .

[Norton] Francis Norton. 20/5/1999. Generating XSL for Schema Validation .

[OgbujiC] Chimezie Ogbuji. Validating XML with Schematron .

[OgbujiU] Uche Ogbuji. Introducing the Schematron .

[Quick] Rick Jelliffe. Schematron Quick Reference .

[Raggett] Dave Raggett. May 1999. Assertion Grammars .

[RDDL] Jonathan Borden and Tim Bray. 22/1/2001. Resource Directory
Description Lanqguage .

[Schematron] Rick Jelliffe. Schematron Home Page .

[WAI] Wendy Chisholm, Gregg Vanderheiden, and Ian Jacobs. 5/5/1999. Web
Content Accessibility Guidelines 1.0 .

[XHTML] Mark Baker, Masayasu Ishikawa, Shinichi Matsui, Peter Stark, Ted
Wugofski, and Toshihiko Yamakami. 19/12/2000. XHTML Basic .

[XMLNames] Tim Bray, Dave Hollander, and Andrew Layman. 14/1/1999.
Namespaces in XML .

[XMLSchema] David Fallside. 24/10/2000. XML Schema Part 0: Primer .

[XPath] James Clark and Steven DeRose. November 1999. XMI. Path Language
(XPath) Version 1.0 .

13 of 14

Schematron: validating XML using XSLT

[XSLT] James Clark. November 1999. XML Transformations (XSLT) Version 1.0 .

[Zvon] Miloslav Nic. Zvon Schematron Tutorial .

14 of 14

