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Research Interests

Eugene Charniak is interested in programming computers to understand language so that they will be able to perform such

tasks as answering questions and holding a conversation. This is far beyond our current capabilities, so research proceeds by

dividing the problem up into manageable subparts. Prof. Chamiak’s research is called "statistical language learning.” He and his

students write programs that collect statistical information about language from large amounts of text, then apply the statistics to

new examples. For example, much of his recent research has been on statistical models of syntactic parsing—grammatically
peech and learning the rules for sentence formation, an exercise akin to the sentence diagramming
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In a Station of the Metro

The apparition of these faces
in the crowd ;
Petals on a wet, black bough.




A linguist’s perspective




A linguist’s perspective

Urs Wehrli, Kunst aufrdumen



In a Station of the Metro

th O u g ht The apparition of these faces
in the crowd ;
/ 1/, Petals on a wet, black
( SIgn/ﬂé) bough.

linguistics arts & humanities

symbol
(signifiani)

(Odgen & Richards, 1923, 7The meaning of meaning)
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Analysis of linguistic variation

Dialect/sociolect: regional/social variation
Register: functional (situational) variation
Register theory (Halliday, Biber a.o0.)

“A register is a cluster of associated features
having a greater-than-random (or rather,
greater than predicted by their unconditioned
probabilities) tendency to co-occur.”

(Halliday, 1988:162)

Registers are relatively stable in time; registerial
repertoire of a language changes over time



Registers in Contact (RegiCo):
Research Questions

New research fields are continuously developing (e.g.,
bioinformatics, mechatronics etc), often through contact
between two disciplines (e.g., computer science — biology)

e What i What kind Of “contact
discipl resource |

e How dl . Ir ”SGEd
discipl is needed?
- sim

* Do they develop their own “language”?
- distinctiveness



RegiCo: Corpus

English Scientific Text Corpus (SciTex)

* full English journal articles
* nine disciplines (register)
* two time slices (time):

— DaSciTex (2000s)

— SaSciTex (1970s/80s)

e approx. 34 million words

(Teich & Holtz 2009,
Teich & Fankhauser 2010,
Degaetano-Ortlieb et al. forthcoming)
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RegiCo: Corpus encoding

e source: pdf

e formats

— plain text

— html

— xml

— CQP (Corpus Query Processor; Schmied, 1998; Evert, 2005)
e types of information

— bib data: author, title, journal, year

— discipline

— logical structure (section, paragraph etc)

— linguistic units: sentence, token

— linguistic categories: lemma, part-of-speech (syntactic

phrases)



RegiCo: Corpus encoding (CQP)

corpus position token lemma
0 This this
>|  Which analysis
.| methods are
: needed?
] exact exact
8 value value
9

+ text and sentence ids

PoS

DT
NN
VBZ
IN
PRP
VBP
DT
JJ
NN
PUN



RegiCo: Methods

* Compare acc. to:
— register (r)
— time (t)
 Compare in terms of:
— lexico-grammatical feature (f1, f2, f3... fn) in a context (r, t)

» Contrast: relative similarity/difference (probability)
unconditioned vs. conditioned probability, e.g.,
p(f1) vs. p (f1 | r1)
conditioned probabilities, e.g.,
p(fl|rl)vs. p(fl ]| r2)

— probability distance measures, e.g., statistical tests,
clustering, classification



Analysis example (1)

* Stance/evaluation in scientific writing
* Indicators - examples

Our algorithm is obviously a 2-approximation for the
problem.

It is obvious that dynamic backcalculation analysis is
more advantageous than the static approach.

Interestingly, these protocols invariably require the use of
supersingular curves.

It is interesting that the rates of lexicon growth are roughly
similar to each other regardless of the algorithm used |[...].

 Question: Are there differences across registers?
— extraction, distribution, statistical testing




<s> []{0,3} "it|It" [pos="VB.*"][]1{0,3} "important"
@"that|to" within s;

<It 1s 1mportant that> this work be extended to
freely bubbling conditions where endogeneous
bubbles 1nteract with exogeneous ones .

<It 1s i1mportant that> this quantity be computed
causally by a filter as s goes from 0 to T .

<It is therefore important to> account for the
frictional stresses in the model.

<It was important to> adapt the recursion of forward
and backward algorithm to the extended architecture
of the HMMs .

A A Bl B1 B2 B2 B3 B3 B4 B4 Cc1 Cc1 Cc2 Cc2 c3 c3 ca ca total
pattern-imp 56 3,44 57 3,50 76 4,67 78 4,79 82 5,04 71 4,36 45 2,76 75 4,61 73 4,48 613
pattern-int 27 1,66 40 2,46 34 2,09 16 0,98 27 1,66 17 1,04 35 2,15 38 2,33 22 1,35 256
pattern-obv 88 2,03 19 1,17 10 0,61 28 1,72 13 0,80 15 0,92 1 0,06 16 0,98 39 2,39 174
pattern-prob 0 0,00 B 0,18 2 0,12 1 0,06 1 0,06 0 0,00 12 0,74 7 0,43 0 0,00 26
modal-imp 6 0,37 29 1,78 49 3,01 25 1,54 24 1,47 81 4,97 44 2,70 7 0,43 8 0,49 273
modal-int 24 1,47 37 2,27 66 4,05 5 0,31 16 0,98 73 4,48 359 22,04 26 1,60 9 0,55 615
modal-obv 185 11,36 113 6,94 51 3,13 58 3,56 47 2,89 100 6,14 25 1,54 76 4,67 81 4,97 736

modal-prob 38 2,33 137 8,41 88 5,40 36 2,21 10 0,61 146 8,97 335 20,57 112 6,88 22 1,35 924
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(Degaetano-Ortlieb & Teich, submitted)



Analysis example (2)

e Self-construal of actors in a scientific community
* Indicator: we + VERB

— extraction, distribution, text classification (SVM)

* some results - what we do in
— Computer Science (A): prove, show, obtain ("formal’)

— Computational Linguistics (B1): examine, implement,
use (‘experimental’)

— Linguistics (C1): propose, suggest, argue ('semiotic’),
feel, see ("cognitive/emotive’)

(Teich & Fankhauser, 2010)



P: predicted class

C:class | C/P A Bl C1
A 210 21 3
B1 19 168 a7
C1 3 32 199

* most misclassifications for Computational Linguistics (B1:
19+47+21+32), only few (3+3) between Computer Science (A)
and Linguistics (C1)

- Computational Linguistics “in between”

* Computational Linguistics more often misclassified as Linguistics
(47) than as Computer Science (19), Linguistics more often
misclassified as Computational Linguistics (32) than Computer
Science misclassified as Computational Linguistics (21)

- Computational Linguistics closer to Linguistics



Analysis example (3)

e Scientific writing is technical, abstract and dense

* Indicators:
— technicality: low type-token ratio
— abstractness: many nouns
— density: lexical density

 Question: How typical are these features of scientific
writing?
Compare to non-scientific language (Brown/LOB)

— extraction, distribution, text classification

(Teich & Fankhauser, 2010)



DaSciTex | FLOB’ | t-test | SVM
standardized TTR 34.0 45.3 29.5
ADV 0.034| 0.060 23.8| 97%
N 0.33 0.27 -19.0
lexical density 8.39 5.76 -18.4
Vv 0.097 0.12 12.2

single features: t-test; set of all features: SVM classifier

C/P DaSciTex FLOB’
DaSciTex 178 8
FLOB’ 9 288

C: class; P: class predicted by SVM Classifier




Analysis example (4)

e formulaic expressions

 N-grams (4-grams), e.g.,
the size of the, the fact that the (NP-based)
with respect to the, in the case of (PP-based)
can be used to, shown in table X (VP-based)

* Questions: Which ones do we find? Are there
preferences acc. to register and document structure?
What are their functions?

—> extraction, distribution, clustering

(Kermes, 2012; Kermes & Teich, in preparation)
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Distribution: document structure
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Functions in discourse
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Modeling

formal grammar
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Tools

Perl scripts

text
collection | [

e

CQP
feature selection & 4 I
extraction: -
tso
KWIC |[j> se
lexico-grammatical Instances
TreeTagger :
patterns S D
data mining —
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tokenization — visualization
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PoS-tagging data mining
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manual EXCGI
annotation:
e.g., semantic
roles and Rapid Miner
relations

Workflow model?




Requirements on data modeling”
for linguistics

* Resource: Corpus

— flexibility: creation of new versions of a corpus
“on the fly””

— accessibility: easy query/mining of a corpus
— adressability: identify relevant objects of study
— agreement on object (unit) to be described
 Computational processing : task-specific
models rather than one overarching model

- each model can be tested for adequacy



* Corpus Analysis: Tools

— 1990°s: build the ideal corpus tool (e.g., Mate, Nite
projects)
— 2000's: ideal corpus tool not possible; instead:
* task-specific tools (e.g., pos-tagging)

e compatibility among tools with different tasks (easy
import/export, e.g., CQP = R, WEKA, Rapid Miner etc)

— 2010‘s: frameworks for building processing pipelines,
e.g., WebLicht (Clarin-D) XML-based TCP format

- recognition of diversity in classification of
object ( & use your favorite tool)
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“Eugene Charniak is interested in programming computers to understand language
so that they will be able to perform such tasks as answering questions and holding
a conversation. This is far beyond our current capabilities, so research proceeds by
dividing the problem up into manageable subparts.”
(http://www.cs.brown.edu/people/faculty/ec.html)



